A Deterministic Algorithm for Computing Divisors in an Interval | SpringerLink
Skip to main content

A Deterministic Algorithm for Computing Divisors in an Interval

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10946))

Included in the following conference series:

  • 2111 Accesses

Abstract

We revisit the problem of finding a nontrivial divisor of a composite integer when it has a divisor in an interval \([\alpha , \beta ]\). We use Strassen’s algorithm to solve this problem. Compared with Kim-Cheon’s algorithms (Math Comp 84(291): 339–354, 2015), our method is a deterministic algorithm but with the same complexity as Kim-Cheon’s probabilistic algorithm, and our algorithm does not need to impose that the divisor is prime. In addition, we can further speed up the theoretical complexity of Kim-Cheon’s algorithms and our algorithm by a logarithmic term \(\log (\beta -\alpha )\) based on the peculiar property of polynomial arithmetic we consider.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bluestein, L.I.: A linear filtering approach to the computation of the discrete fourier transform. IEEE Trans. Electroacoust. 18, 451–466 (1970)

    Article  Google Scholar 

  2. Bostan, A.: Algorithmique efficace pour des opérations de base en calcul formel. Ph.D. thesis (2003). École polytechnique (in English)

    Google Scholar 

  3. Bostan, A., Gaudry, P., Schost, E.: Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput. 36(6), 1777–1806 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: breaking fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_30

    Chapter  Google Scholar 

  5. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis of the RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_9

    Chapter  Google Scholar 

  7. Costa, E., Harvey, D.: Faster deterministic integer factorization. Math. Comput. 83(285), 339–345 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fouque, P.-A., Tibouchi, M., Zapalowicz, J.-C.: Recovering private keys generated with weak PRNGs. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 158–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_10

    Chapter  Google Scholar 

  9. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_6

    Chapter  Google Scholar 

  10. Kim, M., Cheon, J.H.: Computing prime divisors in an interval. Math. Comp. 84(291), 339–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Konyagin, S., Pomerance, C.: On primes recognizable in deterministic polynomial time. In: Graham, R.L., Nešetřil, J. (eds.) The mathematics of Paul Erdős I. Springer, Heidelberg (1997)

    Google Scholar 

  12. Pollard, J.M.: Monte Carlo methods for index computation (mod \(p\)). Math. Comp. 32(143), 918–928 (1978)

    MathSciNet  MATH  Google Scholar 

  13. Pollard, J.M.: Theorems on factorization and primality testing. In: Proceedings of the Cambridge Philosophical Society, vol. 76, pp. 521–528 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Strassen, V.: Einige Resultate \(\ddot{u}\)ber Berechnungskomplexit\(\ddot{a}\)t. Jber. Deutsh. Math. -Verein. 78(1), 1–8 (1976/1977)

    Google Scholar 

Download references

Acknowledgements

This research was supported the National Natural Science Foundation of China (Grants 61702505, 61472417, 61732021, 61772520), National Cryptography Development Fund (MMJJ20170115, MMJJ20170124) and the Fundamental Theory and Cutting Edge Technology Research Program of Institute of Information Engineering, CAS (Grants Y7Z0341103, Y7Z0321102), JST CREST Grant Number JPMJCR14D6, JSPS KAKENHI Grant Number 16H02780.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, L., Lu, Y., Kunihiro, N., Zhang, R., Hu, L. (2018). A Deterministic Algorithm for Computing Divisors in an Interval. In: Susilo, W., Yang, G. (eds) Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science(), vol 10946. Springer, Cham. https://doi.org/10.1007/978-3-319-93638-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93638-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93637-6

  • Online ISBN: 978-3-319-93638-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics