Abstract
We revisit the problem of finding a nontrivial divisor of a composite integer when it has a divisor in an interval \([\alpha , \beta ]\). We use Strassen’s algorithm to solve this problem. Compared with Kim-Cheon’s algorithms (Math Comp 84(291): 339–354, 2015), our method is a deterministic algorithm but with the same complexity as Kim-Cheon’s probabilistic algorithm, and our algorithm does not need to impose that the divisor is prime. In addition, we can further speed up the theoretical complexity of Kim-Cheon’s algorithms and our algorithm by a logarithmic term \(\log (\beta -\alpha )\) based on the peculiar property of polynomial arithmetic we consider.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bluestein, L.I.: A linear filtering approach to the computation of the discrete fourier transform. IEEE Trans. Electroacoust. 18, 451–466 (1970)
Bostan, A.: Algorithmique efficace pour des opérations de base en calcul formel. Ph.D. thesis (2003). École polytechnique (in English)
Bostan, A., Gaudry, P., Schost, E.: Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput. 36(6), 1777–1806 (2007)
Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: breaking fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_30
Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)
Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis of the RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_9
Costa, E., Harvey, D.: Faster deterministic integer factorization. Math. Comput. 83(285), 339–345 (2014)
Fouque, P.-A., Tibouchi, M., Zapalowicz, J.-C.: Recovering private keys generated with weak PRNGs. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 158–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_10
Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_6
Kim, M., Cheon, J.H.: Computing prime divisors in an interval. Math. Comp. 84(291), 339–354 (2015)
Konyagin, S., Pomerance, C.: On primes recognizable in deterministic polynomial time. In: Graham, R.L., Nešetřil, J. (eds.) The mathematics of Paul Erdős I. Springer, Heidelberg (1997)
Pollard, J.M.: Monte Carlo methods for index computation (mod \(p\)). Math. Comp. 32(143), 918–928 (1978)
Pollard, J.M.: Theorems on factorization and primality testing. In: Proceedings of the Cambridge Philosophical Society, vol. 76, pp. 521–528 (1974)
Strassen, V.: Einige Resultate \(\ddot{u}\)ber Berechnungskomplexit\(\ddot{a}\)t. Jber. Deutsh. Math. -Verein. 78(1), 1–8 (1976/1977)
Acknowledgements
This research was supported the National Natural Science Foundation of China (Grants 61702505, 61472417, 61732021, 61772520), National Cryptography Development Fund (MMJJ20170115, MMJJ20170124) and the Fundamental Theory and Cutting Edge Technology Research Program of Institute of Information Engineering, CAS (Grants Y7Z0341103, Y7Z0321102), JST CREST Grant Number JPMJCR14D6, JSPS KAKENHI Grant Number 16H02780.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Peng, L., Lu, Y., Kunihiro, N., Zhang, R., Hu, L. (2018). A Deterministic Algorithm for Computing Divisors in an Interval. In: Susilo, W., Yang, G. (eds) Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science(), vol 10946. Springer, Cham. https://doi.org/10.1007/978-3-319-93638-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-93638-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93637-6
Online ISBN: 978-3-319-93638-3
eBook Packages: Computer ScienceComputer Science (R0)