Haptic Tracing of Midair Linear Trajectories Presented by Ultrasound Bessel Beams | SpringerLink
Skip to main content

Haptic Tracing of Midair Linear Trajectories Presented by Ultrasound Bessel Beams

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10893))

  • 2138 Accesses

Abstract

This paper verifies the ability of human subjects with no audiovisual clues to trace their hands along an invisible vibrotactile line in three-dimensional space created by an ultrasound Bessel beam. A narrow, long, and stationary Bessel beam that passes through a target position is generated. The beam produces midair vibrotactile stimuli on the subjects’ hands. The subjects are required to perceive the beam location and direction actively to trace the presented linear trajectory. With our method, no real-time hand tracking is necessary, which guarantees no latency in presenting the vibrotactile stimuli. We experimentally verified that the subjects were able to trace the beam over 50 cm in its stretching direction with their hands. The average deviation from the beam center was less than 6 cm. Unlike conventional wearable-based motion guidance, the proposed technique requires no devices to be worn by the users in practical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3(3), 155–165 (2010)

    Article  Google Scholar 

  2. Carter, T., Seah, S.A., Long, B., Drinkwater, B., Subramanian, S.: Ultrahaptics: multi-point mid-air haptic feedback for touch surfaces. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST 2013, pp. 505–514. ACM, New York (2013). https://doi.org/10.1145/2501988.2502018

  3. Korres, G., Eid, M.: Haptogram: ultrasonic point-cloud tactile stimulation. IEEE Access 4, 7758–7769 (2016)

    Article  Google Scholar 

  4. Hasegawa, K., Qiu, L., Noda, A., Inoue, S., Shinoda, H.: Electronically steerable ultrasound-driven long narrow air stream. Appl. Phys. Lett. 111(6), 064104 (2017). https://doi.org/10.1063/1.4985159

    Article  Google Scholar 

  5. Amemiya, T., Ando, H., Maeda, T.: Lead-me interface for a pulling sensation from hand-held devices. ACM Trans. Appl. Percept. 5(3), 15:1–15:17 (2008). https://doi.org/10.1145/1402236.1402239

    Article  Google Scholar 

  6. Choiniere, J.P., Gosselin, C.: Development and experimental validation of a haptic compass based on asymmetric torque stimuli. IEEE Trans. Haptics 10(1), 29–39 (2017)

    Article  Google Scholar 

  7. Walker, J., Culbertson, H., Raitor, M., Okamura, A.: Haptic orientation guidance using two parallel double-gimbal control moment gyroscopes. IEEE Trans. Haptics PP(99), 1 (2017)

    Article  Google Scholar 

  8. Cosgun, A., Sisbot, E.A., Christensen, H.I.: Guidance for human navigation using a vibro-tactile belt interface and robot-like motion planning. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6350–6355, May 2014

    Google Scholar 

  9. Baldi, T.L., Scheggi, S., Aggravi, M., Prattichizzo, D.: Haptic guidance in dynamic environments using optimal reciprocal collision avoidance. IEEE Robot. Autom. Lett. 3(1), 265–272 (2018)

    Article  Google Scholar 

  10. Kawaguchi, H., Nojima, T.: STRAVIGATION: a vibrotactile mobile navigation for exploration-like sightseeing. In: Nijholt, A., Romão, T., Reidsma, D. (eds.) ACE 2012. LNCS, vol. 7624, pp. 517–520. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34292-9_48

    Chapter  Google Scholar 

  11. Imamura, Y., Arakawa, H., Kamuro, S., Minamizawa, K., Tachi, S.: HAPMAP: haptic walking navigation system with support by the sense of handrail (2011)

    Google Scholar 

  12. Frey, M.: Cabboots: shoes with integrated guidance system. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp. 245–246. ACM (2007)

    Google Scholar 

  13. Hemmert, F., Hamann, S., Löwe, M., Wohlauf, A., Zeipelt, J., Joost, G.: Take me by the hand: haptic compasses in mobile devices through shape change and weight shift. In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, pp. 671–674. ACM (2010)

    Google Scholar 

  14. Spiers, A.J., Dollar, A.M.: Design and evaluation of shape-changing haptic interfaces for pedestrian navigation assistance. IEEE Trans. Haptics 10(1), 17–28 (2017)

    Article  Google Scholar 

  15. Iwamoto, T., Tatezono, M., Shinoda, H.: Non-contact method for producing tactile sensation using airborne ultrasound. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 504–513. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_64

    Chapter  Google Scholar 

  16. Sodhi, R., Poupyrev, I., Glisson, M., Israr, A.: Aireal: interactive tactile experiences in free air. ACM Trans. Graph. (TOG) 32(4), 134 (2013)

    Article  Google Scholar 

  17. Hasegawa, K., Shinoda, H.: Aerial vibrotactile display based on multiunit ultrasound phased array. IEEE Trans. Haptics 1 (2018). https://doi.org/10.1109/TOH.2018.2799220

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Number JP15H05316 and JP16H06303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suzuki, S., Hasegawa, K., Makino, Y., Shinoda, H. (2018). Haptic Tracing of Midair Linear Trajectories Presented by Ultrasound Bessel Beams. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10893. Springer, Cham. https://doi.org/10.1007/978-3-319-93445-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93445-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93444-0

  • Online ISBN: 978-3-319-93445-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics