Abstract
In this paper, we investigate the effect of a vibro-kinetic seat, i.e., a seat using movement and vibration synchronized with a given media, on psychophysiological states and head movements of users immersed in virtual reality. The aim of this study is to explore the extent to which a vibro-kinetic seat can contribute to create a more immersive virtual reality experience than with a classic seat, including fewer cybersickness discomfort symptoms. We test our hypothesis with a between-subject design where we assigned 45 participants to a specific condition: Vibro-kinetic condition (with the seat moving according to the virtual reality experience) or non-vibro-kinetic condition (where the seat was motionless). Users’ physiological states were captured using electrodermal activity and heart rate variability. Users’ head movements were captured using automatic video detection. The results suggest that the vibro-kinetic condition leads to more immersion and a better psychophysiological state to livirtual learning environmentve a more optimal virtual reality experience without cybersickness symptoms. Also, based on the head movement detection, the vibro-kinetic seat seems to contribute to increasing head movements for a large number of users, an indication of the increased presence feeling in virtual reality. Moreover, users in the vibro-kinetic condition live an enhanced experience and are more immersed in the VR experience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abrams, C., Earl, W.K., Baker, C.H., Buckner, D.N.: Studies of the effects of sea motion on human performance. Office of Naval Research, Technical report, pp. 791–796 (1971)
Annetta, L., Klesath, M., John, M.: Taking science online: evaluating presence and immersion through a laboratory experience in a virtual learning environment for entomology students. J. Coll. Sci. Teach. 39(1), 27–34 (2009)
Bear, M.F., Connors, B.W.: Neurosciences (4e édition): A la découverte du cerveau (2016)
Bles, W., Bos, J.E., De Graaf, B., Groen, E., Wertheim, A.H.: Motion sickness: only one provocative conflict? Brain Res. Bull. 47, 481–487 (1998). https://doi.org/10.1016/S0361-9230(98)00115-4
Bowman, D.A., Mcmahana, R.P., Tech, V.: Virtual reality: how much immersion is enough? (Cover story). Comput. (Long Beach Calif.) 40, 36–43 (2007). https://doi.org/10.1109/MC.2007.257
Brown, E., Cairns, P.: A grounded investigation of game immersion. In: CHI EA 2004 CHI 2004 Extended Abstracts on Human Factors in Computing Systems, p. 1297 (2004). https://doi.org/10.1145/985921.986048
Busscher, B., de Vliegher, D., Ling, Y., Brinkman, W.P.: Physiological measures and self-report to evaluate neutral virtual reality worlds. J. Cyber. Ther. Rehabil. 4, 15–25 (2011)
Cottin, F., Médigue, C., Papelier, Y.: Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans. Am. J. Physiol. Hear. Circ. Physiol. 295, H1150–H1155 (2008). https://doi.org/10.1152/ajpheart.00003.2008
Cruz-Neira, C.: Virtual reality overview. In: SIGGRAPH, p. 1 (1993)
D-Box Technologies Inc.: Media Recognition and Synchronisation to a Motion Signal (2016). https://patents.justia.com/patent/9640046
Dawson, M.E., Schell, A.M., Filion, D.L.: The electrodermal system. In: Foundations of Psychophysiology, pp. 200–223 (2000)
Drexler, J.M.: Identification of system design features that affect sickness in virtual environments (2006)
Ermi, L., Mäyrä, F.: Fundamental components of the gameplay experience: analysing immersion. In: Changing Views Worlds Play, pp. 15–27 (2005). https://doi.org/10.1080/10641260490479818
Gacek, A., Pedryez, W.: ECG Signal Processing Classification and Interpretation. Springer, London (2015). https://doi.org/10.1007/978-0-85729-868-3
Geisler, F.C.M., Vennewald, N., Kubiak, T., Weber, H.: The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Pers. Individ. Differ. 49, 723–728 (2010). https://doi.org/10.1016/j.paid.2010.06.015
Golding, J.F.: Predicting individual differences in motion sickness susceptibility by questionnaire. Pers. Individ. Differ. 41, 237–248 (2006). https://doi.org/10.1016/j.paid.2006.01.012
Goldstein, D.S., Bentho, O., Park, M.-Y., Sharabi, Y.: Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 96, 1255–1261 (2011). https://doi.org/10.1113/expphysiol.2010.056259
Gownder, J.P., McQuivey, J.L., Johnson, C.: The Coming Wave Of Virtual Reality (2016)
Hufnagel, C., Chambres, P., Auxiette, C.: Les systèmes de monitoring du bien-être: application à l’ anxiété dans les troubles du spectre autistique. le Bull Sci l’arapi 34, 50–55 (2014)
Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., Walton, A.: Measuring and defining the experience of immersion in games. Int. J. Hum. Comput. Stud. 66, 641–661 (2008). https://doi.org/10.1016/j.ijhcs.2008.04.004
De Jonckheere, J., Rommel, D., Nandrino, J., Jeanne, M., Logier, R.: Heart rate variability analysis as an index of emotion regulation processes: interest of the Analgesia Nociception Index (ANI). In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS, pp. 3432–3435 (2012). https://doi.org/10.1109/embc.2012.6346703
Kolasinski, E.: Prediction of simulator sickness in a virtual environment (1996)
Van Kuilenburg, H., Den Uyl, M.J., Israël, M.L., Ivan, P.: Advances in face and gesture analysis. In: Proceedings of Measuring Behavior, pp. 371–372 (2008)
McMahan, A.: Immersion, engagement, and presence. Video Game Theor. Read Immers. 67, 86 (2003)
Noldus: FaceReader 6: Reference Manual (2011)
Pauna, H., Léger, P.-M., Sénécal, S., Fredette, M., Courtemanche, F., Chen, S.-L., Labonté-Lemoyne, É., Ménard, J.-F.: The psychophysiological effect of a vibro-kinetic movie experience: the case of the D-BOX movie seat. In: Davis, Fred D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, Adriane B. (eds.) Information Systems and Neuroscience. LNISO, vol. 25, pp. 1–7. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67431-5_1
Reason, J.T.: Motion sickness adaptation: a neural mismatch model. J. R. Soc. Med. 71, 819–829 (1978). https://doi.org/10.1177/014107687807101109
Reason, J.T., Brand, J.J.: Motion Sickness. Academic Press, Oxford (1975)
Rebenitsch, L.R.: Cybersickness Prioritization and Modeling. Michigan State University (2015)
Riva, G., Mantovani, F., Capideville, C.S., Preziosa, A., Morganti, F., Villani, D., Gaggioli, A., Botella, C., Alcañiz, M.: Affective interactions using virtual reality: the link between presence and emotions. CyberPsychol. Behav. 10, 45–56 (2007). https://doi.org/10.1089/cpb.2006.9993
Schubert, T.W.: A new conception of spatial presence: once again, with feeling. Commun. Theor. 19, 161–187 (2009). https://doi.org/10.1111/j.1468-2885.2009.01340.x
Segerstrom, S.C., Nes, L.S.: Heart rate variability reflects effort, strength, and fatigue. Psychol. Sci. 18, 275–281 (2007). https://doi.org/10.1111/j.1467-9280.2007.01888.x
Simon, D., Keith, N., Eugene, N.: A systematic review of Cybersickness. Br. J. Health. Psychol. 19, 149–180 (2014). https://doi.org/10.1145/2677758.2677780
Slater, M., Steed, A., McCarthy, J., Maringelli, F.: The influence of body movement on subjective presence in virtual environments. Hum. Factors 40, 469–477 (1998). https://doi.org/10.1518/001872098779591368
Slater, M., Wilbur, S.: A Framework for Immersive Virtual Environments (FIVE): speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 6, 603–616 (1997). https://doi.org/10.1007/s10750-008-9541-7
Vaderrama, M., Navarro, V., Le van Quyen, M.: Heart Rate Variability as measurement of heart-brain interaction.pdf. Epilespie et coeur 22, 194–200 (2010). https://doi.org/10.1684/epi.2010.0323
Visch, V.T., Tan, E.S., Molenaar, D.: The emotional and cognitive effect of immersion in film viewing. Cogn. Emot. 24, 1439–1445 (2010). https://doi.org/10.1080/02699930903498186
Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virtual Environ. 7, 225–240 (1998). https://doi.org/10.1162/105474698565686
Wu, W., Lee, J.: Improvement of HRV methodology for positive/negative emotion assessment. In: Proceedings of 5th International ICST Conference on Collaborative Computing: Networking, Applications and Worksharing (2009). https://doi.org/10.4108/icst.collaboratecom2009.8296
Acknowledgments
We thank all the study participants and we are thankful for the financial support of the Natural Sciences and Engineering Research Council of Canada.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Gardé, A. et al. (2018). Virtual Reality: Impact of Vibro-Kinetic Technology on Immersion and Psychophysiological State in Passive Seated Vehicular Movement. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-93399-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93398-6
Online ISBN: 978-3-319-93399-3
eBook Packages: Computer ScienceComputer Science (R0)