Aspect Level Sentiment Classification with Attention-over-Attention Neural Networks | SpringerLink
Skip to main content

Aspect Level Sentiment Classification with Attention-over-Attention Neural Networks

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2018)

Abstract

Aspect-level sentiment classification aims to identify the sentiment expressed towards some aspects given context sentences. In this paper, we introduce an attention-over-attention (AOA) neural network for aspect level sentiment classification. Our approach models aspects and sentences in a joint way and explicitly captures the interaction between aspects and context sentences. With the AOA module, our model jointly learns the representations for aspects and sentences, and automatically focuses on the important parts in sentences. Our experiments on laptop and restaurant datasets demonstrate our approach outperforms previous LSTM-based architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

    Google Scholar 

  2. Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention neural networks for reading comprehension. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp. 593–602 (2017)

    Google Scholar 

  3. Ding, X., Liu, B.: The utility of linguistic rules in opinion mining. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 811–812. ACM (2007)

    Google Scholar 

  4. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 513–520 (2011)

    Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Huang, B., Carley, K.M.: On predicting geolocation of tweets using convolutional neural networks. In: Lee, D., Lin, Y.-R., Osgood, N., Thomson, R. (eds.) SBP-BRiMS 2017. LNCS, vol. 10354, pp. 281–291. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60240-0_34

    Chapter  Google Scholar 

  7. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol, 1, pp. 151–160. Association for Computational Linguistics (2011)

    Google Scholar 

  8. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics (2014)

    Google Scholar 

  9. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  10. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, vol. 333, pp. 2267–2273 (2015)

    Google Scholar 

  11. Liu, B., Blasch, E., Chen, Y., Shen, D., Chen, G.: Scalable sentiment classification for big data analysis using Naive Bayes classifier. In: 2013 IEEE International Conference on Big Data, pp. 99–104. IEEE (2013)

    Google Scholar 

  12. Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level sentiment classification. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-2017, pp. 4068–4074 (2017)

    Google Scholar 

  13. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)

    Article  Google Scholar 

  14. Nasukawa, T., Yi, J.: Sentiment analysis: capturing favorability using natural language processing. In: Proceedings of the 2nd International Conference on Knowledge Capture, pp. 70–77. ACM (2003)

    Google Scholar 

  15. Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Sentiful: generating a reliable lexicon for sentiment analysis. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, 2009. ACII 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

  16. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)

    Google Scholar 

  17. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  18. Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., et al.: Semeval-2016 task 5: aspect based sentiment analysis. In: ProWorkshop on Semantic Evaluation (SemEval-2016), pp. 19–30. Association for Computational Linguistics (2016)

    Google Scholar 

  19. Qiu, G., Liu, B., Bu, J., Chen, C.: Expanding domain sentiment lexicon through double propagation. In: Proceedings of the 21st International Jont Conference on Artifical Intelligence, vol. 9, pp. 1199–1204 (2009)

    Google Scholar 

  20. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)

    Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  23. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  Google Scholar 

  24. Tang, D., Qin, B., Feng, X., Liu, T.: Effective LSTMs for target-dependent sentiment classification. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 3298–3307 (2016)

    Google Scholar 

  25. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1422–1432 (2015)

    Google Scholar 

  26. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory network. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 214–224 (2016)

    Google Scholar 

  27. Wagner, J., Arora, P., Cortes, S., Barman, U., Bogdanova, D., Foster, J., Tounsi, L.: DCU: aspect-based polarity classification for semeval task 4 (2014)

    Google Scholar 

  28. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2. pp. 90–94. Association for Computational Linguistics (2012)

    Google Scholar 

  29. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: EMNLP, pp. 606–615 (2016)

    Google Scholar 

  30. Zhu, X., Sobihani, P., Guo, H.: Long short-term memory over recursive structures. In: International Conference on Machine Learning, pp. 1604–1612 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by Minerva - State Stability N00014-13-1-0835/N00014-16-1-2324 and Minerva - Dynamic Statistical Network Informatics - SCM N00014-15-1-2797. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of Minerva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binxuan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, B., Ou, Y., Carley, K.M. (2018). Aspect Level Sentiment Classification with Attention-over-Attention Neural Networks. In: Thomson, R., Dancy, C., Hyder, A., Bisgin, H. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2018. Lecture Notes in Computer Science(), vol 10899. Springer, Cham. https://doi.org/10.1007/978-3-319-93372-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93372-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93371-9

  • Online ISBN: 978-3-319-93372-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics