Finding Induced Subgraphs in Scale-Free Inhomogeneous Random Graphs | SpringerLink
Skip to main content

Finding Induced Subgraphs in Scale-Free Inhomogeneous Random Graphs

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10836))

Included in the following conference series:

Abstract

We study the induced subgraph isomorphism problem on inhomogeneous random graphs with infinite variance power-law degrees. We provide a fast algorithm that determines for any connected graph H on k vertices if it exists as induced subgraph in a random graph with n vertices. By exploiting the scale-free graph structure, the algorithm runs in O(nk) time for small values of k. We test our algorithm on several real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)

    Article  Google Scholar 

  2. Boguñá, M., Pastor-Satorras, R.: Class of correlated random networks with hidden variables. Phys. Rev. E 68, 036112 (2003)

    Article  Google Scholar 

  3. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Struct. Algorithms 31(1), 3–122 (2007)

    Article  MathSciNet  Google Scholar 

  4. Brach, P., Cygan, M., Łacki, J., Sankowski, P.: Algorithmic complexity of power law networks. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp. 1306–1325. Society for Industrial and Applied Mathematics, Philadelphia (2016)

    Google Scholar 

  5. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 99(25), 15879–15882 (2002) (electronic)

    Article  MathSciNet  Google Scholar 

  7. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  Google Scholar 

  8. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999)

    Article  Google Scholar 

  9. Fountoulakis, N., Friedrich, T., Hermelin, D.: On the average-case complexity of parameterized clique. arXiv:1410.6400v1 (2014)

  10. Fountoulakis, N., Friedrich, T., Hermelin, D.: On the average-case complexity of parameterized clique. Theor. Comput. Sci. 576, 18–29 (2015)

    Article  MathSciNet  Google Scholar 

  11. Friedrich, T., Krohmer, A.: Cliques in hyperbolic random graphs. In: INFOCOM Proceedings 2015, pp. 1544–1552. IEEE (2015)

    Google Scholar 

  12. Friedrich, T., Krohmer, A.: Parameterized clique on inhomogeneous random graphs. Disc. Appl. Math. 184, 130–138 (2015)

    Article  MathSciNet  Google Scholar 

  13. Garey, M.R., Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W H FREEMAN & CO (2011)

    Google Scholar 

  14. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In. RECOMB, pp. 92–106 (2007)

    Google Scholar 

  15. Heydari, H., Taheri, S.M.: Distributed maximal independent set on inhomogeneous random graphs. In: 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC). IEEE, March 2017

    Google Scholar 

  16. van der Hofstad, R.: Random Graphs and Complex Networks, vol. 1. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  17. van der Hofstad, R., van Leeuwaarden, J.S.H., Stegehuis, C.: Optimal subgraph structures in scale-free networks. arXiv:1709.03466 (2017)

  18. Janson, S., Łuczak, T., Norros, I.: Large cliques in a power-law random graph. J. Appl. Probab. 47(04), 1124–1135 (2010)

    Article  MathSciNet  Google Scholar 

  19. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  20. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  21. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  Google Scholar 

  22. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data. Accessed 14 Mar 2017

  23. Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi.me - weaving chinese linking open data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 205–220. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_14

    Chapter  Google Scholar 

  24. Norros, I., Reittu, H.: On a conditionally poissonian graph process. Adv. Appl. Probab. 38(01), 59–75 (2006)

    Article  MathSciNet  Google Scholar 

  25. Omidi, S., Schreiber, F., Masoudi-Nejad, A.: MODA: an efficient algorithm for network motif discovery in biological networks. Genes Genetic Syst. 84(5), 385–395 (2009)

    Article  Google Scholar 

  26. Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004)

    Article  MathSciNet  Google Scholar 

  27. Schreiber, F., Schwobbermeyer, H.: MAVisto: a tool for the exploration of network motifs. Bioinformatics 21(17), 3572–3574 (2005)

    Article  Google Scholar 

  28. Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the internet. Phys. Rev. E 65, 066130 (2002)

    Article  Google Scholar 

  29. Williams, V.V., Wang, J.R., Williams, R., Yu, H.: Finding four-node subgraphs in triangle time. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pp. 1671–1680. Society for Industrial and Applied Mathematics, Philadelphia (2015)

    Google Scholar 

Download references

Acknowledgements

The work of JvL and CS was supported by NWO TOP grant 613.001.451. The work of JvL was further supported by the NWO Gravitation Networks grant 024.002.003, an NWO TOP-GO grant and by an ERC Starting Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Stegehuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardinaels, E., van Leeuwaarden, J.S.H., Stegehuis, C. (2018). Finding Induced Subgraphs in Scale-Free Inhomogeneous Random Graphs. In: Bonato, A., Prałat, P., Raigorodskii, A. (eds) Algorithms and Models for the Web Graph. WAW 2018. Lecture Notes in Computer Science(), vol 10836. Springer, Cham. https://doi.org/10.1007/978-3-319-92871-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92871-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92870-8

  • Online ISBN: 978-3-319-92871-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics