A Neurodynamic Approach to Multiobjective Linear Programming | SpringerLink
Skip to main content

A Neurodynamic Approach to Multiobjective Linear Programming

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

Abstract

In this paper, a neurodynamic approach is proposed for solving multiobjective linear programming problems. Multiple objectives are firstly scalarized using a weighted sum technique. Recurrent neural networks are then adopted to generate Pareto-optimal solutions. To diversify the solutions along Pareto fronts, particle swarm optimization is used to optimize the weights of the scalarized objective function. Numerical results are presented to illustrate the effectiveness of the proposed approaches.

This work was supported in part by the Research Grants Council of the Hong Kong Special Administrative Region of China, under Grants 14207614 and 11208517, and in part by the National Natural Science Foundation of China under grant 61673330.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Applications. Wiley, Hoboken (1986)

    MATH  Google Scholar 

  2. Ogryczak, W.: Multiple criteria linear programming model for portfolio selection. Ann. Oper. Res. 97(1), 143–162 (2000)

    Article  MathSciNet  Google Scholar 

  3. Hopfield, J.J., Tank, D.W.: Computing with neural circuits: a model. Science 233(4764), 625–633 (1986)

    Article  Google Scholar 

  4. Wang, J.: Analysis and design of a recurrent neural network for linear programming. IEEE Trans. Circuit Syst. I. 40(9), 613–618 (1993)

    Article  Google Scholar 

  5. Xia, Y., Leung, H., Wang, J.: A projection neural network and its application to constrained optimization problems. IEEE Trans. Circuits Syst. I. 49(4), 447–458 (2002)

    Article  MathSciNet  Google Scholar 

  6. Liu, Q., Wang, J.: A one-layer recurrent neural network with a discontinuous activation function for linear programming. Neural Comput. 20(5), 1366–1383 (2008)

    Article  MathSciNet  Google Scholar 

  7. Guo, Z., Liu, Q., Wang, J.: A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints. IEEE Trans. Neural Netw. 22(12), 1892–1900 (2011)

    Article  Google Scholar 

  8. Liu, Q., Wang, J.: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions. IEEE Trans. Neural Netw. 22(4), 601–613 (2011)

    Article  MathSciNet  Google Scholar 

  9. Yan, Z., Fan, J., Wang, J.: A collective neurodynamic approach to constrained global optimization. IEEE Trans. Neural Netw. Learn. Syst. 28(5), 1206–1215 (2017)

    Article  Google Scholar 

  10. Yang, S., Liu, Q., Wang, J.: A collaborative neurodynamic approach to multiple-objective distributed optimization. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 981–992 (2018). https://doi.org/10.1109/TNNLS.2017.2652478

    Article  Google Scholar 

  11. Leung, M.F., Wang, J.: A collaborative neurodynamic approach to multiobjective optimization. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2018.2806481

  12. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 1995 IEEE International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  13. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  14. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  15. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)

    Article  MathSciNet  Google Scholar 

  16. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optimiz. 8(3), 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  17. Antunes, C.H., Alves, M.J., Climaco, J.: Multiobjective Linear and Integer Programming. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28746-1

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Fai Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leung, MF., Wang, J. (2018). A Neurodynamic Approach to Multiobjective Linear Programming. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics