Analysis of Permanence Time in Emotional States: A Case Study Using Educational Software | SpringerLink
Skip to main content

Analysis of Permanence Time in Emotional States: A Case Study Using Educational Software

  • Conference paper
  • First Online:
Intelligent Tutoring Systems (ITS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10858))

Included in the following conference series:

Abstract

This article presents the results of an experiment in which we investigated how prior algebra knowledge and personality can influence the permanence time from the confusion state to frustration/boredom state in a computer learning environment. Our experimental results indicate that people with a neurotic personality and a low level of algebra knowledge can deal with confusion for less time and can easily feel frustrated/bored when there is no intervention. Our analysis also suggest that people with an extroversion personality and a low level of algebra knowledge are able to control confusion for longer, leading to later interventions. These findings support that it is possible to detect emotions in a less invasive way and without the need of physiological sensors or complex algorithms. Furthermore, obtained median times can be incorporated into computational regulation models (e.g. adaptive interfaces) to regulate students’ emotion during the teaching-learning process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As students can feel more than one emotion each time, in this paper we are considering the dominant emotion in a moment in time and the transition to another dominant emotion [18] during the teaching-learning process.

  2. 2.

    Available at https://personalitatem.ufs.br/inventory/home.xhtml.

  3. 3.

    Available at http://acubo.tecnologia.ws/aluno.html.

  4. 4.

    http://goo.gl/YtGn7H.

References

  1. Pekrun, R.: The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educ. Psychol. Rev. 18(4), 315–341 (2006)

    Article  Google Scholar 

  2. Sullins, J., Graesser, A.C.: The relationship between cognitive disequilibrium, emotions and individual differences on student question generation. Int. J. Learn. Technol. 9(3), 221–247 (2014)

    Article  Google Scholar 

  3. D’Mello, S., Graesser, A.: AutoTutor and affective autotutor: learning by talking with cognitively and emotionally intelligent computers that talk back. ACM Trans. Interact. Intell. Syst. 2(4), 23:1–23:39 (2013)

    Google Scholar 

  4. D’Mello, S., Calvo, R.A.: Beyond the basic emotions: what should affective computing compute? In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 2287–2294 (2013)

    Google Scholar 

  5. Craig, S., Graesser, A., Sullins, J., Gholson, B.: Affect and learning: an exploratory look into the role of affect in learning with AutoTutor. J. Educ. Media 29(3), 241–250 (2004)

    Article  Google Scholar 

  6. D’Mello, S., Picard, R.W., Graesser, A.: Toward an affect-sensitive AutoTutor. IEEE Intell. Syst. 22(4), 53–61 (2007)

    Article  Google Scholar 

  7. Graesser, A., D’Mello, S.K.: Theoretical perspectives on affect and deep learning. In: Calvo, R., D’Mello, S. (eds.) New Perspectives on Affect and Learning Technologies, vol. 3, pp. 11–21. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9625-1_2

    Chapter  Google Scholar 

  8. Shanabrook, D.H., Arroyo, I., Woolf, B.P.: Using touch as a predictor of effort: what the iPad can tell us about user affective state. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 322–327. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31454-4_29

    Chapter  Google Scholar 

  9. Xiaolan, P., Lun, X., Xin, L., Zhiliang, W.: Emotional state transition model based on stimulus and personality characteristics. China Commun. 10(6), 146–155 (2013)

    Article  Google Scholar 

  10. Gross, J.J.: Emotion regulation: affective, cognitive, and social consequences. Psychophysiology 39(3), 281–291 (2002)

    Article  Google Scholar 

  11. Graesser, A.C., Chipman, P., Haynes, B.C., Olney, A.: AutoTutor: an intelligent tutoring system with mixed-initiative dialogue. IEEE Trans. Educ. 48(4), 612–618 (2005)

    Article  Google Scholar 

  12. D’Mello, S., Lehman, B., Pekrun, R., Graesser, A.: Confusion can be beneficial for learning. Learn. Instr. 29, 153–170 (2014)

    Article  Google Scholar 

  13. Clifford, M.M.: Failure tolerance and academic risk-taking in ten- to twelve-year-old students. Br. J. Educ. Psychol. 58(1), 15–27 (1988)

    Article  Google Scholar 

  14. Dweck, C.S.: Mindset: The New Psychology of Success, 1st edn. Random House Incorporated, New York (2006)

    Google Scholar 

  15. Meyer, D.K., Turner, J.C.: Re-conceptualizing emotion and motivation to learn in classroom contexts. Educ. Psychol. Rev. 18(4), 377–390 (2006)

    Article  Google Scholar 

  16. Pekrun, R., Götz, T., Daniels, L.M., Stupnisky, R.H., Perry, R.P.: Boredom in achievement settings: exploring control-value antecedents and performance outcomes of a neglected emotion. J. Educ. Psychol. 102(3), 531–549 (2010)

    Article  Google Scholar 

  17. D’Mello, S.: Monitoring affective trajectories during complex learning. In: Seel, M. (ed.) Encyclopedia of the Sciences of Learning, pp. 2325–2328. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-1428-6

    Chapter  Google Scholar 

  18. Larsen, J.T., McGraw, A.P., Cacioppo, J.T.: Can people feel happy and sad at the same time? J. Pers. Soc. Psychol. 81(4), 684 (2001)

    Article  Google Scholar 

  19. Meeker, W.Q., Escobar, L.A.: Statistical Methods for Reliability Data, 1st edn. Wiley, New York (1998)

    MATH  Google Scholar 

  20. Sebe, N., Cohen, I., Gevers, T., Huang, T.S.: Multimodal approaches for emotion recognition: a survey. In: Proceedings of SPIE, vol. 5670, pp. 56–67 (2005)

    Google Scholar 

  21. Lera, E., Garreta-Domingo, M.: Ten emotion heuristics: guidelines for assessing the user’s affective dimension easily and cost-effectively. In: Proceedings of 21st BCS HCI Group Conference, vol. 2, pp. pp. 163–166 (2007)

    Google Scholar 

  22. Kleinbaum, D., Klein, M.: Survival Analysis: A Self-Learning Text, 3rd edn. Springer, New York (2012). https://doi.org/10.1007/978-1-4757-2555-1

    Book  MATH  Google Scholar 

  23. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory, 1st edn. Wiley, New York (1994)

    Book  Google Scholar 

  24. Sahu, S.K., Dey, D.K., Aslanidou, H., Sinha, D.: A Weibull regression model with gamma frailties for multivariate survival data. Lifetime Data Anal. 3(2), 123–137 (1997)

    Article  Google Scholar 

  25. Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd edn. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  26. Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: Winbugs - a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10(4), 325–337 (2000)

    Article  Google Scholar 

  27. Niederreiter, H.: Some current issues in quasi-Monte Carlo methods. J. Complex. 19(3), 428–433 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helena Reis , Danilo Alvares , Patricia Jaques or Seiji Isotani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reis, H., Alvares, D., Jaques, P., Isotani, S. (2018). Analysis of Permanence Time in Emotional States: A Case Study Using Educational Software. In: Nkambou, R., Azevedo, R., Vassileva, J. (eds) Intelligent Tutoring Systems. ITS 2018. Lecture Notes in Computer Science(), vol 10858. Springer, Cham. https://doi.org/10.1007/978-3-319-91464-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91464-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91463-3

  • Online ISBN: 978-3-319-91464-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics