The Hybrid Plan Controller Construction for Trajectories in Sobolev Space | SpringerLink
Skip to main content

The Hybrid Plan Controller Construction for Trajectories in Sobolev Space

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

Abstract

This paper proposes a new integrated approach to the hybrid plan controller construction. It forms a synergy of the logic-based approach in terms of LTL-description and automata of Büchi with the integral-based approach. It is shown that the integral-based complementation may be naturally exploited in detection of the robot trajectories by the appropriate control functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The role of compact support consists in a fact that integrals (coefficients) disappears in a neighborhood of its boundary, what simplifies the computations.

References

  1. Antonniotti, M., Mishra, B.: Discrete event models+ temporal logic = supervisory controller: automatic synthesis of locomotion controllers. In: Proceedings of IEEE International Conference on Robotics and Automation (1999)

    Google Scholar 

  2. Bacchus, F., Kabanza, F.: Using temporal logic to express search control knowledge for planning. Artif. Intell. 116, 123–191 (2000)

    Article  MathSciNet  Google Scholar 

  3. Buchi, R.: On a Decision Method in Restricted Second-order Arithmetic. Stanford University Press, Stanford (1962)

    MATH  Google Scholar 

  4. Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  5. Fainekos, G., Kress-gazit, H., Pappas, G.: Hybrid controllers for path planning: a temporal logic approach. In: Proceeding of the IEEE International Conference on Decision and Control, Sevilla, pp. 4885–4890, December 2005

    Google Scholar 

  6. Fainekos, G., Kress-gazit, H., Pappas, G.: Hybrid controllers for path planning: a temporal logic approach. In: Proceedings of the IEEE International Conference on Decision and Control, Sevilla, pp. 4885–4890 (2005)

    Google Scholar 

  7. Fox, M., Long, D.: PDDL+: planning with time and metric sources. Technical report, University of Durham (2001a)

    Google Scholar 

  8. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. Technical report, University of Durham (2001b)

    Google Scholar 

  9. Fox, M., Long, D.: The third international planning competition: temporal and metric planning. In: Preprints of The Sixth International Conference on Artificial Intelligence Planning and Scheduling, vol. 20, pp. 115–118 (2002)

    Google Scholar 

  10. Fox, M., Long, D.: An extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res. 20, 61–124 (2003)

    Article  Google Scholar 

  11. De Giacomo, G., Vardi, M.Y.: Automata-theoretic approach to planning for temporally extended goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 226–238. Springer, Heidelberg (2000). https://doi.org/10.1007/10720246_18

    Chapter  Google Scholar 

  12. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, Heidelberg (1965). https://doi.org/10.1007/978-3-662-29794-0

    Book  MATH  Google Scholar 

  13. Hristu-Varsakelis, D., Egersted, M., Krishnaprasad, S.: On the complexity of the motion description language MDLe. In: Proceedings of the 42 IEEE Conference on Decision and Control, pp. 3360–3365, December 2003

    Google Scholar 

  14. Jobczyk, K., Ligeza, A.: Fuzzy-temporal approach to the handling of temporal interval relations and preferences. In: Proceeding of INISTA, pp. 1–8 (2015)

    Google Scholar 

  15. Jobczyk, K., Ligeza, A.: A general method of the hybrid controller construction for temporal planing with preferences. In: Proceeding of FedCSIS, pp. 61–70 (2016)

    Google Scholar 

  16. Jobczyk, K., Ligeza, A.: Multi-valued halpern-shoham logic for temporal allen’s relations and preferences. In: Proceedings of the Annual International Conference of Fuzzy Systems (FuzzIEEE) (2016, to appear)

    Google Scholar 

  17. Jobczyk, K., Ligeza, A.: Systems of temporal logic for a use of engineering. toward a more practical approach. In: Stýskala, V., Kolosov, D., Snášel, V., Karakeyev, T., Abraham, A. (eds.) Intelligent Systems for Computer Modelling. AISC, vol. 423, pp. 147–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27644-1_14

    Chapter  MATH  Google Scholar 

  18. Jobczyk, K., Ligeza, A., Kluza, K.: Selected temporal logic systems: an attempt at engineering evaluation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 219–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_20

    Chapter  Google Scholar 

  19. Jobczyk, K., Ligęza, A., Bouzid, M., Karczmarczuk, J.: Comparative approach to the multi-valued logic construction for preferences. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 172–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_16

    Chapter  Google Scholar 

  20. Jourani, A.: Controllability and strong controllability of differential inclusions. Nonlinear Anal. Theory Methods Appl. 75, 1374–1384 (2012)

    Article  MathSciNet  Google Scholar 

  21. Maximova, L.: Temporal logics with operator ‘the next’ do not have interpolation or beth property. Sibirskii Matematicheskii Zhurnal 32(6), 109–113 (1991)

    MathSciNet  Google Scholar 

  22. Montanari, A., Sala, P.: Interval logics and \(\omega \)B-regular languages. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 431–443. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37064-9_38

    Chapter  MATH  Google Scholar 

  23. Pednault, F.: Synthetizing plans that contain actions with contex-dependent effects. Comput. Intell. 4(4), 356–372 (1988)

    Article  Google Scholar 

  24. Pednault, F.: Exploring the middle ground between STRIPS and the situation calculus. In: Proceedings of the International Conference on Knowledge Representation and Reasoning (KR), vol. 4, no. 5, pp. 324–332 (1989)

    Google Scholar 

  25. Pednault, F.: ADL-and the state-transition model of action. J. Log. Comput. 4(5), 467–512 (1994)

    Article  MathSciNet  Google Scholar 

  26. Pnueli, A.: The temporal logic of program focs. pp. 46–57 (1977)

    Google Scholar 

  27. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the 1st Symposium on Logic in Computer Science, pp. 322–331, June 1986

    Google Scholar 

  28. Vardi, M., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Jobczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jobczyk, K., Ligȩza, A. (2018). The Hybrid Plan Controller Construction for Trajectories in Sobolev Space. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics