Architecture of Database Index for Content-Based Image Retrieval Systems | SpringerLink
Skip to main content

Architecture of Database Index for Content-Based Image Retrieval Systems

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

Abstract

In this paper, we present a novel database index architecture for retrieving images. Effective storing, browsing and searching collections of images is one of the most important challenges of computer science. The design of architecture for storing such data requires a set of tools and frameworks such as relational database management systems. We create a database index as a DLL library and deploy it on the MS SQL Server. The CEDD algorithm is used for image description. The index is composed of new user-defined types and a user-defined function. The presented index is tested on an image dataset and its effectiveness is proved. The proposed solution can be also be ported to other database management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and topsis for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017)

    Article  Google Scholar 

  3. Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79547-6_30

    Chapter  Google Scholar 

  4. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)

    Article  Google Scholar 

  5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  6. Gabryel, M.: The bag-of-words methods with pareto-fronts for similar image retrieval. In: Damaševičius, R., Mikašytė, V. (eds.) ICIST 2017. CCIS, vol. 756, pp. 374–384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67642-5_31

    Chapter  Google Scholar 

  7. Gabryel, M., Damaševičius, R.: The image classification with different types of image features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 497–506. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_44

    Chapter  Google Scholar 

  8. Gabryel, M., Grycuk, R., Korytkowski, M., Holotyak, T.: Image indexing and retrieval using GSOM algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 706–714. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_63

    Chapter  Google Scholar 

  9. Grycuk, R.: Novel visual object descriptor using surf and clustering algorithms. J. Appl. Math. Comput. Mech. 15(3), 37–46 (2016)

    Article  Google Scholar 

  10. Grycuk, R., Gabryel, M., Korytkowski, M., Romanowski, J., Scherer, R.: Improved digital image segmentation based on stereo vision and mean shift algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 433–443. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_41

    Chapter  Google Scholar 

  11. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06932-6_36

    Chapter  Google Scholar 

  12. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 605–615. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_53

    Chapter  Google Scholar 

  13. Grycuk, R., Gabryel, M., Nowicki, R., Scherer, R.: Content-based image retrieval optimization by differential evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 86–93. IEEE (2016)

    Google Scholar 

  14. Grycuk, R., Gabryel, M., Scherer, M., Voloshynovskiy, S.: Image descriptor based on edge detection and crawler algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 647–659. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_57

    Chapter  Google Scholar 

  15. Grycuk, R., Gabryel, M., Scherer, R., Voloshynovskiy, S.: Multi-layer architecture for storing visual data based on WCF and microsoft SQL server database. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 715–726. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_64

    Chapter  Google Scholar 

  16. Grycuk, R., Knop, M.: Neural video compression based on SURF scene change detection algorithm. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. AISC, vol. 389, pp. 105–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23814-2_13

    Chapter  Google Scholar 

  17. Grycuk, R., Scherer, M., Voloshynovskiy, S.: Local keypoint-based image detector with object detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 507–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_45

    Chapter  Google Scholar 

  18. Grycuk, R., Scherer, R., Gabryel, M.: New image descriptor from edge detector and blob extractor. J. Appl. Math. Comput. Mech. 14(4), 31–39 (2015)

    Article  Google Scholar 

  19. Huang, J., Kumar, S., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768, June 1997

    Google Scholar 

  20. Iakovidou, C., Bampis, L., Chatzichristofis, S.A., Boutalis, Y.S., Amanatiadis, A.: Color and edge directivity descriptor on GPGPU. In: 2015 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 301–308. IEEE (2015)

    Google Scholar 

  21. Karczmarek, P., Kiersztyn, A., Pedrycz, W., Dolecki, M.: An application of chain code-based local descriptor and its extension to face recognition. Pattern Recogn. 65, 26–34 (2017)

    Article  Google Scholar 

  22. Kumar, P.P., Aparna, D.K., Rao, K.V.: Compact descriptors for accurate image indexing and retrieval: FCTH and CEDD. Int. J. Eng. Res. Technol. (IJERT) 1 (2012). ISSN 2278–0181

    Google Scholar 

  23. Lavoué, G.: Combination of bag-of-words descriptors for robust partial shape retrieval. Vis. Comput. 28(9), 931–942 (2012)

    Article  Google Scholar 

  24. Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)

    Article  Google Scholar 

  25. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  26. Meskaldji, K., Boucherkha, S., Chikhi, S.: Color quantization and its impact on color histogram based image retrieval accuracy. In: First International Conference on Networked Digital Technologies, NDT 2009, pp. 515–517, July 2009

    Google Scholar 

  27. Riid, A., Preden, J.S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)

    Article  Google Scholar 

  28. Sadiqbatcha, S., Jafarzadeh, S., Ampatzidis, Y.: Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations. J. Artif. Intell. Soft Comput. Res. 8(2), 103–110 (2018)

    Article  Google Scholar 

  29. Śmietański, J., Tadeusiewicz, R., Łuczyńska, E.: Texture analysis in perfusion images of prostate cancer-a case study. Int. J. Appl. Math. Comput. Sci. 20(1), 149–156 (2010)

    Article  Google Scholar 

  30. Valle, E., Cord, M.: Advanced techniques in CBIR: local descriptors, visual dictionaries and bags of features. In: 2009 Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI TUTORIALS), pp. 72–78. IEEE (2009)

    Google Scholar 

  31. Veltkamp, R.C., Tanase, M.: Content-based image retrieval systems: a survey, pp. 1–62. Utrecht University, Department of Computing Science (2002)

    Google Scholar 

  32. Wang, J.Z., Boujemaa, N., Del Bimbo, A., Geman, D., Hauptmann, A.G., Tesić, J.: Diversity in multimedia information retrieval research. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 5–12. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grycuk, R., Najgebauer, P., Scherer, R., Siwocha, A. (2018). Architecture of Database Index for Content-Based Image Retrieval Systems. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics