Improvement of the Simplified Silhouette Validity Index | SpringerLink
Skip to main content

Improvement of the Simplified Silhouette Validity Index

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

  • 2002 Accesses

Abstract

The fundamental issue of data clustering is an evaluation of results of clustering algorithms. Lots of methods have been proposed for cluster validation. The most popular approach is based on internal cluster validity indices. Among this kind of indices, the Silhouette index and its computationally simpled version, i.e. the Simplified Silhouette, are frequently used. In this paper modification of the Simplified Silhouette index is proposed. The suggested approach is based on using an additional component, which improves clusters validity assessment. The performance of the new cluster validity indices has been demonstrated for artificial and real datasets, where the PAM clustering algorithm has been applied as the underlying clustering technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Prez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46, 243–256 (2013)

    Article  Google Scholar 

  2. Bilski, J., Smoląg, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)

    Article  Google Scholar 

  3. Bilski, J., Wilamowski, B.M.: Parallel learning of feedforward neural networks without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 57–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_6

    Chapter  Google Scholar 

  4. Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017). https://doi.org/10.1515/jaiscr-2017-0019

    Article  Google Scholar 

  5. Bradley, P., Fayyad, U.: Refining initial points for k-means clustering. In: Proceedings of the Fifteenth International Conference on Knowledge Discovery and Data Mining, pp. 9–15. AAAI Press, New York (1998)

    Google Scholar 

  6. Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017). https://doi.org/10.1515/jaiscr-2017-0009

    Article  Google Scholar 

  7. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  8. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN (2005)

    Google Scholar 

  9. Devi, V.S., Meena, L.: Parallel MCNN (PMCNN) with application to prototype selection on large and streaming data. J. Artif. Intell. Soft Comput. Res. 7(3), 155–169 (2017). https://doi.org/10.1515/jaiscr-2017-0011

    Article  Google Scholar 

  10. Fränti, P., Rezaei, M., Zhao, Q.: Centroid index: cluster level similarity measure. Pattern Recogn. 47(9), 3034–3045 (2014)

    Article  Google Scholar 

  11. Gabryel, M.: A bag-of-features algorithm for applications using a NoSQL database. Inf. Softw. Technol. 639, 332–343 (2016)

    Article  Google Scholar 

  12. Gabryel, M., Grycuk, R., Korytkowski, M., Holotyak, T.: Image indexing and retrieval using GSOM algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 706–714. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_63

    Chapter  Google Scholar 

  13. Gałkowski, T.: Kernel estimation of regression functions in the boundary regions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 158–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_15

    Chapter  Google Scholar 

  14. Galkowski, T., Pawlak, M.: Nonparametric estimation of edge values of regression functions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 49–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_5

    Chapter  Google Scholar 

  15. Hruschka, E.R., de Castro, L.N., Campello, R.J.: Evolutionary algorithms for clustering gene-expression data. In: Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 403–406. IEEE (2004)

    Google Scholar 

  16. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  17. Ke, Y., Hagiwara, M.: An English neural network that learns texts, finds hidden knowledge, and answers questions. J. Artif. Intell. Soft Comput. Res. 7(4), 229–242 (2017). https://doi.org/10.1515/jaiscr-2017-0016

    Article  Google Scholar 

  18. Lago-Fernández, L.F., Corbacho, F.: Normality-based validation for crisp clustering. Pattern Recogn. 43(3), 782–795 (2010)

    Article  MATH  Google Scholar 

  19. Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.edu/ml

  20. Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017). https://doi.org/10.1515/jaiscr-2017-0008

    Article  Google Scholar 

  21. Meng, X., van Dyk, D.: The EM algorithm - an old folk-song sung to a fast new tune. J. Roy. Stat. Soc. Ser. B (Methodol.) 59(3), 511–567 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983)

    Article  MATH  Google Scholar 

  23. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 370–379 (1995)

    Article  Google Scholar 

  24. Park, H.S., Jun, C.H.: A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)

    Article  Google Scholar 

  25. Rohlf, F.: Single-link clustering algorithms. In: Krishnaiah, P.R, Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, pp. 267–284 (1982)

    Google Scholar 

  26. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  27. Rutkowski L, Cpałka K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications. New Trends in Intelligent Technologies. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)

    Google Scholar 

  28. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  29. Saha, S., Bandyopadhyay, S.: Some connectivity based cluster validity indices. Appl. Soft Comput. 12(5), 1555–1565 (2012)

    Article  Google Scholar 

  30. Sameh, A.S., Asoke, K.N.: Development of assessment criteria for clustering algorithms. Pattern Anal. Appl. 12(1), 79–98 (2009)

    Article  MathSciNet  Google Scholar 

  31. Serdah, A.M., Ashour, W.M.: Clustering large-scale data based on modified affinity propagation algorithm. J. Artif. Intell. Soft Comput. Res. 6(1), 23–33 (2016). https://doi.org/10.1515/jaiscr-2016-0003

    Article  Google Scholar 

  32. Shieh, H.-L.: Robust validity index for a modified subtractive clustering algorithm. Appl. Soft Comput. 22, 47–59 (2014)

    Article  Google Scholar 

  33. Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. 20(3), 687–700 (2017)

    Article  MathSciNet  Google Scholar 

  34. Starczewski, A., Krzyżak, A.: A modification of the silhouette index for the improvement of cluster validity assessment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 114–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_10

    Chapter  Google Scholar 

  35. Starczewski, A., Krzyżak, A.: Improvement of the validity index for determination of an appropriate data partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 159–170. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_16

    Chapter  Google Scholar 

  36. Wu, K.L., Yang, M.S., Hsieh, J.N.: Robust cluster validity indexes. Pattern Recogn. 42, 2541–2550 (2009)

    Article  MATH  Google Scholar 

  37. Vendramin, L., Campello, R.J., Hruschka, E.R.: Relative clustering validity criteria: a comparative overview. Stat. Anal. Data Min. 3(4), 209–235 (2010)

    MathSciNet  Google Scholar 

  38. Zhao, Q., Fränti, P.: WB-index: a sum-of-squares based index for cluster validity. Data Knowl. Eng. 92, 77–89 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Starczewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starczewski, A., Przybyszewski, K. (2018). Improvement of the Simplified Silhouette Validity Index. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics