Abstract
In this paper, a measure for assessment the progress of pathological changes in spine bones is introduced. The definition of the measure is based on a syntactic description of geometric features of the bone contours. The proposed approach is applied for analysis of vertebra syndesmophytes in X-ray images of the spine. It turns out that the proposed measure assesses the progress of the disease effectively. The results obtained by the algorithm based on the introduced measure are consistent with the assessment done by an expert.
This paper was supported by the AGH - University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection as a part of the statutory project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aydin, S.Z., Kasapoglu Gunal, E., Kurum, E., Akar, S., Mungan, H.E., Alibaz-Oner, F., Lambert, R.G., Atagunduz, P., Marzo Ortega, H., McGonagle, D., Maksymowych, W.P.: Limited reliability of radiographic assessment of spinal progression in ankylosing spondylitis. Rheumatology 56, 2162–2169 (2017)
Antani, S., Long, L.R., Thoma, G.R.: A biomedical information system for combined content-based retrieval of spine X-ray images and associated text information. In: Proceedings of the 3rd Indian Conference on Computer Vision, Graphics and Image Processing, pp. 242–247 (2002)
Antani, S., Lee, D.J., Long, L.R., Thoma, G.R.: Evaluation of shape similarity measurement methods for spine X-ray images. J. Vis. Commun. Image Represent. 15, 285–302 (2004)
Benerjee, S., Bhunia, S., Schaefer, G.: Osteophyte detection for hand osteoarthritis identification in X-ray images using CNNs. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS pp. 6196–6199 (2011)
Bielecka, M., Bielecki, A., Korkosz, M., Skomorowski, M., Wojciechowski, W., Zieliński, B.: Application of shape description methodology to hand radiographs interpretation. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 11–18. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15910-7_2
Bielecka, M., Piórkowski, A.: Optimization of numerical calculations of geometric features of a curve describing preprocessed X-Ray images of bones as a starting point for syntactic analysis of finger bone contours. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 365–376. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46418-3_32
Bielecka, M., Korkosz, M.: Generalized shape language application to detection of a specific type of bone erosion in X-ray images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 531–540. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_45
Baraliakos, X., Listing, J., Rudwaleit, M., Haibel, H., Brandt, J., Sieper, J., et al.: Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann. Rheum. Dis. 66, 910–915 (2007)
Creemers, M., Franssen, M.J., van’t Hof, M.A., Gribnau, F.W., van de Putte, L.B., van Riel, P.L.: Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann. Rheum. Dis. 64, 127–129 (2005)
El Maghraoui, A., Bensabbah, R., Bahiri, R., Bezza, A., Guedira, N., Hajjaj-Hassouni, N.: Cervical spine involvement in ankylosing spondylitis. Clin. Rheumatol. 22, 94–98 (2003)
Howe, B., Gururajan, A., Sari-Sarraf, A., Long, L.R.: Hierarchical segmentation of cervical and lumbar vertebrae using a customized generalized Hough transform and extensions to active appearance models. In: Proceedings of the 6th IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 182–186 (2004)
Heuft-Dorenbosch, L., Landewe, R., Weijers, R., Wanders, A., Houben, H., van der Linden, S., et al.: Combining information obtained from magnetic resonance imaging and conventional radiographs to detect sacroiliitis in patients with recent onset inflammatory back pain. Ann. Rheum. Dis. 65, 804–808 (2006)
Lee, H.S., Kim, T.H., Yun, H.R., Park, Y.W., Jung, S.S., Bae, S.C., et al.: Radiologic changes of cervical spine in ankylosing spondylitis. Clin. Rheumatol. 20, 262–266 (2001)
Long, L.R., Thoma, G.R.: Use of shape models to search digitized spine X-rays. In: Proceedings of the 13th IEEE Symposium on Computer-Based Medical Systems, pp. 255–260 (2000)
Mandl, P., Navarro-Compn, V., Terslev, L., Aegerter, P., et al.: EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann. Rheum. Dis. 74, 1327–1339 (2015)
Maas, F., Spoorenberg, A., Brouwer, E., van der Veer, E., Bootsma, H., Bos, R., Wink, F.R., Arends, S.: Radiographic damage and progression of the cervical spine in ankylosing spondylitis patients treated with TNF-a inhibitors: facet joints vs. vertebral bodies. Semin. Arthritis. Rheum. 46(5), 562–568 (2017)
Nurzynska, K., Piórkowski, A., Bielecka, M., Obuchowicz, R., Taton, G., Sulicka, J., Korkosz, M.: Automatical syndesmophyte contour extraction from lateral C spine radiographs. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds.) PCBBE 2017. AISC, vol. 647, pp. 164–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66905-2_14
Piórkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39796-2_1
Geusens, P., Lems, W.F.: Osteoimmunology and osteoporosis. Arthritis Res. Ther. 13, 242 (2011)
Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Image languages in intelligent radiological palm diagnostics. Pattern Recogn. 39, 2157–2165 (2006)
Stolwijk, C., van Tubergen, A., Castillo-Ortiz, J.D., Boonen, A.: Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 65–73 (2015)
Spoorenberg, A., de Vlam, K., van der Linden, S., Dougados, M., Mielants, H., van de Tempel, H., et al.: Radiological scoring methods in ankylosing spondylitis. Reliability and change over 1 and 2 years. J. Rheumatol. 31, 125–132 (2004)
Tan, S., Wang, R., Ward, M.M.: Syndesmophyte growth in ankylosing spondylitis. Curr. Opin. Rheumatol. 27, 326–332 (2015)
Tezmol, A., Sari-Sarraf, H., Mitra, S., Long, R., Gururajan, A.: Customized Hough transform for robust segmentation of cervical vertebrae from X-ray images. In: Proceedings of the 5th IEEE Southwest Symposium on the Image Analysis and Interpretation, pp. 224–228 (2002)
Wanders, A.J., Landewe, R.B., Spoorenberg, A., Dougados, M., van der Linden, S., Mielants, H., et al.: What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods based on the outcome measures in rheumatology clinical trials filter. Arthritis Rheum. 50, 2622–2632 (2004)
Xu, X., Lee, D.J., Antani, S., Long, L.R.: A spine X-ray image retrieval system using partial shape matching. IEEE Trans. Inf. Technol. Biomed. 12, 100–108 (2008)
Zamora, G., Sari-Sarraf, H., Long, R.: Hierarchical segmentation of vertebrae from X-ray images. In: Proceedings of SPIE, Medical Imaging 2003: Image Processing, vol. 5032, p. 631 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bielecka, M., Obuchowicz, R., Korkosz, M. (2018). The Shape Language Application to Evaluation of the Vertebra Syndesmophytes Development Progress. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-91262-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91261-5
Online ISBN: 978-3-319-91262-2
eBook Packages: Computer ScienceComputer Science (R0)