The Shape Language Application to Evaluation of the Vertebra Syndesmophytes Development Progress | SpringerLink
Skip to main content

The Shape Language Application to Evaluation of the Vertebra Syndesmophytes Development Progress

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

  • 1960 Accesses

Abstract

In this paper, a measure for assessment the progress of pathological changes in spine bones is introduced. The definition of the measure is based on a syntactic description of geometric features of the bone contours. The proposed approach is applied for analysis of vertebra syndesmophytes in X-ray images of the spine. It turns out that the proposed measure assesses the progress of the disease effectively. The results obtained by the algorithm based on the introduced measure are consistent with the assessment done by an expert.

This paper was supported by the AGH - University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection as a part of the statutory project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aydin, S.Z., Kasapoglu Gunal, E., Kurum, E., Akar, S., Mungan, H.E., Alibaz-Oner, F., Lambert, R.G., Atagunduz, P., Marzo Ortega, H., McGonagle, D., Maksymowych, W.P.: Limited reliability of radiographic assessment of spinal progression in ankylosing spondylitis. Rheumatology 56, 2162–2169 (2017)

    Article  Google Scholar 

  2. Antani, S., Long, L.R., Thoma, G.R.: A biomedical information system for combined content-based retrieval of spine X-ray images and associated text information. In: Proceedings of the 3rd Indian Conference on Computer Vision, Graphics and Image Processing, pp. 242–247 (2002)

    Google Scholar 

  3. Antani, S., Lee, D.J., Long, L.R., Thoma, G.R.: Evaluation of shape similarity measurement methods for spine X-ray images. J. Vis. Commun. Image Represent. 15, 285–302 (2004)

    Article  Google Scholar 

  4. Benerjee, S., Bhunia, S., Schaefer, G.: Osteophyte detection for hand osteoarthritis identification in X-ray images using CNNs. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS pp. 6196–6199 (2011)

    Google Scholar 

  5. Bielecka, M., Bielecki, A., Korkosz, M., Skomorowski, M., Wojciechowski, W., Zieliński, B.: Application of shape description methodology to hand radiographs interpretation. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 11–18. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15910-7_2

    Chapter  Google Scholar 

  6. Bielecka, M., Piórkowski, A.: Optimization of numerical calculations of geometric features of a curve describing preprocessed X-Ray images of bones as a starting point for syntactic analysis of finger bone contours. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 365–376. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46418-3_32

    Chapter  Google Scholar 

  7. Bielecka, M., Korkosz, M.: Generalized shape language application to detection of a specific type of bone erosion in X-ray images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 531–540. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_45

    Chapter  Google Scholar 

  8. Baraliakos, X., Listing, J., Rudwaleit, M., Haibel, H., Brandt, J., Sieper, J., et al.: Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann. Rheum. Dis. 66, 910–915 (2007)

    Article  Google Scholar 

  9. Creemers, M., Franssen, M.J., van’t Hof, M.A., Gribnau, F.W., van de Putte, L.B., van Riel, P.L.: Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann. Rheum. Dis. 64, 127–129 (2005)

    Article  Google Scholar 

  10. El Maghraoui, A., Bensabbah, R., Bahiri, R., Bezza, A., Guedira, N., Hajjaj-Hassouni, N.: Cervical spine involvement in ankylosing spondylitis. Clin. Rheumatol. 22, 94–98 (2003)

    Article  Google Scholar 

  11. Howe, B., Gururajan, A., Sari-Sarraf, A., Long, L.R.: Hierarchical segmentation of cervical and lumbar vertebrae using a customized generalized Hough transform and extensions to active appearance models. In: Proceedings of the 6th IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 182–186 (2004)

    Google Scholar 

  12. Heuft-Dorenbosch, L., Landewe, R., Weijers, R., Wanders, A., Houben, H., van der Linden, S., et al.: Combining information obtained from magnetic resonance imaging and conventional radiographs to detect sacroiliitis in patients with recent onset inflammatory back pain. Ann. Rheum. Dis. 65, 804–808 (2006)

    Article  Google Scholar 

  13. Lee, H.S., Kim, T.H., Yun, H.R., Park, Y.W., Jung, S.S., Bae, S.C., et al.: Radiologic changes of cervical spine in ankylosing spondylitis. Clin. Rheumatol. 20, 262–266 (2001)

    Article  Google Scholar 

  14. Long, L.R., Thoma, G.R.: Use of shape models to search digitized spine X-rays. In: Proceedings of the 13th IEEE Symposium on Computer-Based Medical Systems, pp. 255–260 (2000)

    Google Scholar 

  15. Mandl, P., Navarro-Compn, V., Terslev, L., Aegerter, P., et al.: EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann. Rheum. Dis. 74, 1327–1339 (2015)

    Article  Google Scholar 

  16. Maas, F., Spoorenberg, A., Brouwer, E., van der Veer, E., Bootsma, H., Bos, R., Wink, F.R., Arends, S.: Radiographic damage and progression of the cervical spine in ankylosing spondylitis patients treated with TNF-a inhibitors: facet joints vs. vertebral bodies. Semin. Arthritis. Rheum. 46(5), 562–568 (2017)

    Article  Google Scholar 

  17. Nurzynska, K., Piórkowski, A., Bielecka, M., Obuchowicz, R., Taton, G., Sulicka, J., Korkosz, M.: Automatical syndesmophyte contour extraction from lateral C spine radiographs. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds.) PCBBE 2017. AISC, vol. 647, pp. 164–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66905-2_14

    Chapter  Google Scholar 

  18. Piórkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39796-2_1

    Chapter  Google Scholar 

  19. Geusens, P., Lems, W.F.: Osteoimmunology and osteoporosis. Arthritis Res. Ther. 13, 242 (2011)

    Article  Google Scholar 

  20. Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Image languages in intelligent radiological palm diagnostics. Pattern Recogn. 39, 2157–2165 (2006)

    Article  Google Scholar 

  21. Stolwijk, C., van Tubergen, A., Castillo-Ortiz, J.D., Boonen, A.: Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 65–73 (2015)

    Article  Google Scholar 

  22. Spoorenberg, A., de Vlam, K., van der Linden, S., Dougados, M., Mielants, H., van de Tempel, H., et al.: Radiological scoring methods in ankylosing spondylitis. Reliability and change over 1 and 2 years. J. Rheumatol. 31, 125–132 (2004)

    Google Scholar 

  23. Tan, S., Wang, R., Ward, M.M.: Syndesmophyte growth in ankylosing spondylitis. Curr. Opin. Rheumatol. 27, 326–332 (2015)

    Article  Google Scholar 

  24. Tezmol, A., Sari-Sarraf, H., Mitra, S., Long, R., Gururajan, A.: Customized Hough transform for robust segmentation of cervical vertebrae from X-ray images. In: Proceedings of the 5th IEEE Southwest Symposium on the Image Analysis and Interpretation, pp. 224–228 (2002)

    Google Scholar 

  25. Wanders, A.J., Landewe, R.B., Spoorenberg, A., Dougados, M., van der Linden, S., Mielants, H., et al.: What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods based on the outcome measures in rheumatology clinical trials filter. Arthritis Rheum. 50, 2622–2632 (2004)

    Article  Google Scholar 

  26. Xu, X., Lee, D.J., Antani, S., Long, L.R.: A spine X-ray image retrieval system using partial shape matching. IEEE Trans. Inf. Technol. Biomed. 12, 100–108 (2008)

    Article  Google Scholar 

  27. Zamora, G., Sari-Sarraf, H., Long, R.: Hierarchical segmentation of vertebrae from X-ray images. In: Proceedings of SPIE, Medical Imaging 2003: Image Processing, vol. 5032, p. 631 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Bielecka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bielecka, M., Obuchowicz, R., Korkosz, M. (2018). The Shape Language Application to Evaluation of the Vertebra Syndesmophytes Development Progress. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics