Abstract
In this paper we study the directions of periodicity of three-dimensional subshifts of finite type (SFTs) and in particular their slopes. A configuration of a subshift has a slope of periodicity if it is periodic in exactly one direction, the slope being the angles of the periodicity vector. In this paper, we prove that any \(\varSigma ^0_2\) set may be realized as a a set of slopes of an SFT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aubrun, N., Sablik, M.: Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Applicandae Math. 126(1), 35–63 (2013)
Berger, R.: The Undecidability of the Domino Problem. Ph.D. thesis, Harvard University (1964)
Berger, R.: The Undecidability of the Domino Problem. No. 66 in Memoirs of the American Mathematical Society, The American Mathematical Society (1966)
Culik II, K., Kari, J.: An aperiodic set of Wang cubes. J. Univers. Comput. Sci. 1(10), 675–686 (1995)
Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applications. J. Comput. Syst. Sci. 78(3), 731–764 (2012)
Gurevich, Y., Koryakov, I.: Remarks on Berger’s paper on the domino problem. Siberian Math. J. 13(2), 319–320 (1972)
Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171(3), 2011–2038 (2010)
Jeandel, E., Rao, M.: An aperiodic set of 11 Wang tiles. CoRR abs/1506.06492 (2015). http://arxiv.org/abs/1506.06492
Jeandel, E., Vanier, P.: Slopes of tilings. In: Kari, J. (ed.) JAC, pp. 145–155. Turku Center for Computer Science (2010)
Jeandel, E., Vanier, P.: Characterizations of periods of multi-dimensional shifts. Ergod. Theor. Dyn. Syst. 35(2), 431–460 (2015). http://journals.cambridge.org/article_S0143385713000606
Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J.Comput. 21(3), 571–586 (1992)
Kari, J.: A small aperiodic set of Wang tiles. Discrete Math. 160(1–3), 259–264 (1996)
Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)
Meyerovitch, T.: Growth-type invariants for \(\mathbb{Z}^d\) subshifts of finite type and arithmetical classes of real numbers. Inventiones Math. 184(3), 567–589 (2010)
Myers, D.: Non recursive tilings of the plane II. J. Symbolic Log. 39(2), 286–294 (1974)
Ollinger, N.: Two-by-two substitution systems and the undecidability of the domino problem. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 476–485. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_51
Poupet, V.: Yet another aperiodic tile set. In: Journées Automates Cellulaires (JAC), pp. 191–202. TUCS (2010)
Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inventiones Math. 12(3), 177–209 (1971)
Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)
Wang, H.: Proving theorems by pattern recognition I. Commun. ACM 3(4), 220–234 (1960)
Acknowledgements
The authors would like to thank anonymous reviewers who pointed out a mistake in a previous version of the paper.
This work was supported by grant TARMAC ANR 12 BS02 007 01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Moutot, E., Vanier, P. (2018). Slopes of 3-Dimensional Subshifts of Finite Type. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-90530-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90529-7
Online ISBN: 978-3-319-90530-3
eBook Packages: Computer ScienceComputer Science (R0)