Slopes of 3-Dimensional Subshifts of Finite Type | SpringerLink
Skip to main content

Slopes of 3-Dimensional Subshifts of Finite Type

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Included in the following conference series:

Abstract

In this paper we study the directions of periodicity of three-dimensional subshifts of finite type (SFTs) and in particular their slopes. A configuration of a subshift has a slope of periodicity if it is periodic in exactly one direction, the slope being the angles of the periodicity vector. In this paper, we prove that any \(\varSigma ^0_2\) set may be realized as a a set of slopes of an SFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubrun, N., Sablik, M.: Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Applicandae Math. 126(1), 35–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, R.: The Undecidability of the Domino Problem. Ph.D. thesis, Harvard University (1964)

    Google Scholar 

  3. Berger, R.: The Undecidability of the Domino Problem. No. 66 in Memoirs of the American Mathematical Society, The American Mathematical Society (1966)

    Article  MathSciNet  Google Scholar 

  4. Culik II, K., Kari, J.: An aperiodic set of Wang cubes. J. Univers. Comput. Sci. 1(10), 675–686 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applications. J. Comput. Syst. Sci. 78(3), 731–764 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gurevich, Y., Koryakov, I.: Remarks on Berger’s paper on the domino problem. Siberian Math. J. 13(2), 319–320 (1972)

    Article  MATH  Google Scholar 

  7. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171(3), 2011–2038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jeandel, E., Rao, M.: An aperiodic set of 11 Wang tiles. CoRR abs/1506.06492 (2015). http://arxiv.org/abs/1506.06492

  9. Jeandel, E., Vanier, P.: Slopes of tilings. In: Kari, J. (ed.) JAC, pp. 145–155. Turku Center for Computer Science (2010)

    Google Scholar 

  10. Jeandel, E., Vanier, P.: Characterizations of periods of multi-dimensional shifts. Ergod. Theor. Dyn. Syst. 35(2), 431–460 (2015). http://journals.cambridge.org/article_S0143385713000606

    Article  MathSciNet  MATH  Google Scholar 

  11. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J.Comput. 21(3), 571–586 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kari, J.: A small aperiodic set of Wang tiles. Discrete Math. 160(1–3), 259–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)

    Book  MATH  Google Scholar 

  14. Meyerovitch, T.: Growth-type invariants for \(\mathbb{Z}^d\) subshifts of finite type and arithmetical classes of real numbers. Inventiones Math. 184(3), 567–589 (2010)

    Article  MathSciNet  Google Scholar 

  15. Myers, D.: Non recursive tilings of the plane II. J. Symbolic Log. 39(2), 286–294 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ollinger, N.: Two-by-two substitution systems and the undecidability of the domino problem. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 476–485. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_51

    Chapter  MATH  Google Scholar 

  17. Poupet, V.: Yet another aperiodic tile set. In: Journées Automates Cellulaires (JAC), pp. 191–202. TUCS (2010)

    Google Scholar 

  18. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inventiones Math. 12(3), 177–209 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  20. Wang, H.: Proving theorems by pattern recognition I. Commun. ACM 3(4), 220–234 (1960)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers who pointed out a mistake in a previous version of the paper.

This work was supported by grant TARMAC ANR 12 BS02 007 01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Vanier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moutot, E., Vanier, P. (2018). Slopes of 3-Dimensional Subshifts of Finite Type. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics