Abstract
As urban atmospheric conditions are tightly connected to citizens’ quality of life, the concept of efficient environmental decision support systems becomes highly relevant. However, the scale and heterogeneity of the involved data, together with the need for associating environmental information with physical reality, increase the complexity of the problem. In this work, we capitalize on the semantic expressiveness of ontologies to build a framework that uniformly covers all phases of the decision making process: from structuring and integration of data, to inference of new knowledge. We define a simplified ontology schema for representing the status of the environment and its impact on citizens’ health and actions. We also implement a novel ontology- and rule-based reasoning mechanism for generating personalized recommendations, capable of treating differently individuals with diverse levels of vulnerability under poor air quality conditions. The overall framework is easily adaptable to new sources and needs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Karatzas, K., Kukkonen, J.: Quality of life information services towards a sustainable society for the atmospheric environment. In: COST Action ES0602 Workshop Proceedings (2009)
Zhu, L., Karatzas, K., Lee, J.: Urban environmental information perception and multimodal communication: the air quality example. In: Esposito, A., Hussain, A., Marinaro, M., Martone, R. (eds.) Multimodal Signals: Cognitive and Algorithmic Issues. LNCS (LNAI), vol. 5398, pp. 288–299. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00525-1_29
Michels, H., Mauè, P.: Semantics for notifying events in the affecting environment. EnviroInfo Conference, pp. 501–507 (2010)
Karatzas, K., Endregard, G., Fløisand, I.: Citizen-oriented environmental information services: usage and impact modelling. In: 19th EnviroInfo Conference, pp. 872–878 (2005)
Rospocher, M., Serafini, L.: An ontological framework for decision support. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 239–254. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37996-3_16
Moumtzidou, A., Papadopoulos, S., Vrochidis, S., Kompatsiaris, I., Kourtidis, K., Hloupis, G., Stavrakas, I., Papachristopoulou, K., Keratidis, C.: Towards air quality estimation using collected multimodal environmental data. In: Satsiou, A., Panos, G., Praggidis, I., Vrochidis, S., Papadopoulos, S., Keratidis, C., Syropoulou, P., Liu, H.-Y. (eds.) IFIN/ISEM -2016. LNCS, vol. 10078, pp. 147–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50237-3_7
McIntosh, B.S., et al.: Environmental decision support systems (EDSS) development-challenges and best practices. Environ. Model. Softw. J. 26(12), 1389–1402 (2011). https://doi.org/10.1016/j.envsoft.2011.09.009
Matthies, M., Giupponi, C., Ostendorf, B.: Environmental decision support systems: current issues, methods and tools. Environ. Model. Softw. J. 22(2), 123–127 (2007). https://doi.org/10.1016/j.envsoft.2005.09.005
Raskin, R., Pan, M.: Semantic web for earth and environmental terminology (SWEET). In: Proceedings of the Workshop on Semantic Web Technologies for Searching and Retrieving Scientific Data (2003)
Buttigieg, P.L., Morrison, N., Smith, B., Mungall, C.J., Lewis, S.E.: The environment ontology: contextualising biological and biomedical entities. J. Biom. Semant. 4(1), 43 (2013). https://doi.org/10.1186/2041-1480-4-43
Oprea, M.M.: AIR_POLLUTION_Onto: an ontology for air pollution analysis and control. In: Iliadis, L., Maglogiannis, I., Tsoumakas, G., Vlahavas, I., Bramer, M. (eds.) AIAI 2009. IFIPAICT, vol. 296, pp. 135–143. Springer, Boston (2016). https://doi.org/10.1007/978-1-4419-0221-4_17
Bicer, V., Tran, T., Abecker, A., Nedkov, R.: KOIOS: utilizing semantic search for easy-access and visualization of structured environmental data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_1
Ruther, M., Bandholtz, T., Logean, A.: Linked environment data for the life sciences. In: 3rd International Workshop on Semantic Web Applications & Tools for the Life Sciences (2010)
Kontopoulos, E., Martinopoulos, G., Lazarou, D., Bassiliades, N.: An ontology-based decision support tool for optimising domestic solar hot water system selection. J. Cleaner Prod. 112, 4636–4646 (2016)
Wetz, P., Trinh, T.D., Do, B.L., Anjomshoaa, A., Kiesling, E., Tjoa, A.M.: Towards an environmental information system for semantic stream data. In: 28th EnviroInfo Conference, pp. 637–644 (2014)
Wanner, L., et al.: Ontology-centered environmental information delivery for personalised decision support. Expert Syst. Appl. 42, 5032–5046 (2015). https://doi.org/10.1016/j.eswa.2015.02.048
Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition J. 5(2), 199–220 (1993). https://doi.org/10.1006/knac.1993.1008
Turban, E., Aronson, J.E., Liang, T.P.: Decision Support Systems and Intelligent Systems, pp. 100–136. Pearson Prentice-Hall, Upper Saddle River (2005)
Suárez-Figueroa, M.C., Gómez-Pérez, A., Villazón-Terrazas, B.: How to write and use the ontology requirements specification document. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5871, pp. 966–982. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05151-7_16
W3C OWL Working Group: OWL 2 Web Ontology Language. W3C Recommendation (2012). https://www.w3.org/TR/owl2-overview/
Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL ontologies with graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 320–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11955-7_42
Knublauch, H., Hendler, J.A., Idehen, K.: SPIN - overview and motivation. W3C Member Submission (2011). https://www.w3.org/Submission/spin-overview/
hackAIR Consortium. D4.2: Semantic integration and reasoning of environmental data (2017). http://www.hackair.eu/wp-content/uploads/2016/03/d4.2-semantic_integration_and_reasoning_of_environmental_data.pdf
Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C Recommendation (2017). https://www.w3.org/TR/shacl/
Acknowledgments
This work is partially funded by the European Commission under the contract number H2020-688363 hackAIR.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Riga, M., Kontopoulos, E., Karatzas, K., Vrochidis, S., Kompatsiaris, I. (2018). An Ontology-Based Decision Support Framework for Personalized Quality of Life Recommendations. In: Dargam, F., Delias, P., Linden, I., Mareschal, B. (eds) Decision Support Systems VIII: Sustainable Data-Driven and Evidence-Based Decision Support. ICDSST 2018. Lecture Notes in Business Information Processing, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-90315-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-90315-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90314-9
Online ISBN: 978-3-319-90315-6
eBook Packages: Computer ScienceComputer Science (R0)