Abstract
The gene expression profile of a tissue averages the expression profiles of all cells in this tissue. Digital tissue deconvolution (DTD) addresses the following inverse problem: Given the expression profile y of a tissue, what is the cellular composition c of that tissue? If X is a matrix whose columns are reference profiles of individual cell types, the composition c can be computed by minimizing \(\mathcal {L}(y-Xc)\) for a given loss function \(\mathcal {L}\). Current methods use predefined all-purpose loss functions. They successfully quantify the dominating cells of a tissue, while often falling short in detecting small cell populations.
Here we use training data to learn the loss function \(\mathcal {L}\) along with the composition c. This allows us to adapt to application-specific requirements such as focusing on small cell populations or distinguishing phenotypically similar cell populations. Our method quantifies large cell fractions as accurately as existing methods and significantly improves the detection of small cell populations and the distinction of similar cell types.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795), 1960–1964 (2006)
Fridman, W.H., Pagès, F., Sautès-Fridman, C., Galon, J.: The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12(4), 298–306 (2012)
Hackl, H., Charoentong, P., Finotello, F., Trajanoski, Z.: Computational genomics tools for dissecting tumour-immune cell interactions. Nat. Rev. Genet. 17(8), 441–458 (2016)
Ibrahim, S.F., van den Engh, G.: Flow cytometry and cell sorting. In: Kumar, A., Galaev, I.Y., Mattiasson, B. (eds.) Cell Separation. Advances in Biochemical Engineering/Biotechnology, pp. 19–39. Springer, Heidelberg (2007). https://doi.org/10.1007/10_2007_073
Bendall, S.C., Simonds, E.F., Qiu, P., El-ad, D.A., Krutzik, P.O., Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., et al.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030), 687–696 (2011)
Wu, A.R., Neff, N.F., Kalisky, T., Dalerba, P., Treutlein, B., Rothenberg, M.E., Mburu, F.M., Mantalas, G.L., Sim, S., Clarke, M.F., et al.: Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11(1), 41–46 (2014)
Lu, P., Nakorchevskiy, A., Marcotte, E.M.: Expression deconvolution: a reinterpretation of DNA microarray data reveals dynamic changes in cell populations. Proc. Nat. Acad. Sci. USA 100(18), 10370–10375 (2003)
Abbas, A.R., Wolslegel, K., Seshasayee, D., Modrusan, Z., Clark, H.F.: Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One 4(7), e6098 (2009)
Gong, T., Hartmann, N., Kohane, I.S., Brinkmann, V., Staedtler, F., Letzkus, M., Bongiovanni, S., Szustakowski, J.D.: Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples. PLoS One 6(11), e27156 (2011)
Qiao, W., Quon, G., Csaszar, E., Yu, M., Morris, Q., Zandstra, P.W.: PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput. Biol. 8(12), e1002838 (2012)
Altboum, Z., Steuerman, Y., David, E., Barnett-Itzhaki, Z., Valadarsky, L., Keren-Shaul, H., Meningher, T., Mendelson, E., Mandelboim, M., Gat-Viks, I., et al.: Digital cell quantification identifies global immune cell dynamics during influenza infection. Mol. Syst. Biol. 10(2), 720 (2014)
Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., Alizadeh, A.A.: Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12(5), 453–457 (2015)
Li, B., Severson, E., Pignon, J.C., Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J.C., Rodig, S., et al.: Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 17(1), 174 (2016)
Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al.: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352(6282), 189–196 (2016)
Chen, W.C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H.: pbdMPI: Programming with Big Data - Interface to MPI. R Package (2012). https://cran.r-project.org/package=pbdMPI
Chen, W.C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H.: A Quick Guide for the pbdMPI Package. R Vignette (2012). https://cran.r-project.org/package=pbdMPI
Georg, P., Richtmann, D., Wettig, T.: DD-\(\alpha \)AMG on QPACE 3. arXiv:1710.07041 (2017)
Veillette, A., Bookman, M.A., Horak, E.M., Bolen, J.B.: The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55(2), 301–308 (1988)
Addison, E.G., North, J., Bakhsh, I., Marden, C., Haq, S., Al-Sarraj, S., Malayeri, R., Wickremasinghe, R.G., Davies, J.K., Lowdell, M.W.: Ligation of CD8\(\alpha \) on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity. Immunology 116(3), 354–361 (2005)
Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M.C., Biassoni, R., Moretta, L.: Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Ann. Rev. Immunol. 19(1), 197–223 (2001). PMID: 11244035
Rickert, R.C., Rajewsky, K., Roes, J.: Impairment of T-cell-dependent B-cell responses and B-l cell development in CD19-deficient mice. Nature 376(6538), 352–355 (1995). https://doi.org/10.1038/376352a0
Li, H., Ayer, L.M., Lytton, J., Deans, J.P.: Store-operated cation entry mediated by CD20 in membrane rafts. J. Biol. Chem. 278(43), 42427–42434 (2003)
Hsueh, R.C., Scheuermann, R.H.: Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv. Immunol. 75, 283–316 (2000)
Wienands, J., Schweikert, J., Wollscheid, B., Jumaa, H., Nielsen, P.J., Reth, M.: SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188(4), 791–795 (1998)
Hori, S., Nomura, T., Sakaguchi, S.: Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609), 1057–1061 (2003)
Haziot, A., Ferrero, E., Köntgen, F., Hijiya, N., Yamamoto, S., Silver, J., Stewart, C.L., Goyert, S.M.: Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4(4), 407–414 (1996)
Sherr, C.J., Rettenmier, C.W., Sacca, R., Roussel, M.F., Look, A.T., Stanley, E.R.: The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF 1. Cell 41(3), 665–676 (1985)
Wu, Y.J., La Pierre, D.P., Wu, J., Yee, A.J., Yang, B.B.: The interaction of versican with its binding partners. Cell Res. 15(7), 483–494 (2005)
Du, W., Yang, W., Yee, A.J.: Roles of versican in cancer biology - tumorigenesis, progression and metastasis. Histol. Histopathol. 28(6), 701–713 (2013)
Gupta, A., Kaur, C.D., Jangdey, M., Saraf, S.: Matrix metalloproteinase enzymes and their naturally derived inhibitors: novel targets in photocarcinoma therapy. Ageing Res. Rev. 13, 65–74 (2014)
Sneddon, J.B., Zhen, H.H., Montgomery, K., van de Rijn, M., Tward, A.D., West, R., Gladstone, H., Chang, H.Y., Morganroth, G.S., Oro, A.E., et al.: Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc. Nat. Acad. Sci. USA 103(40), 14842–14847 (2006)
Gory-Faure, S., Prandini, M., Pointu, H., Roullot, V., Pignot-Paintrand, I., Vernet, M., Huber, P.: Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126(10), 2093–2102 (1999)
Shi, C., Lu, J., Wu, W., Ma, F., Georges, J., Huang, H., Balducci, J., Chang, Y., Huang, Y.: Endothelial cell-specific molecule 2 (ECSM2) localizes to cell-cell junctions and modulates bFGF-directed cell migration via the ERK-FAK pathway. PloS One 6(6), e21482 (2011)
Haseloff, R.F., Dithmer, S., Winkler, L., Wolburg, H., Blasig, I.E.: Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects. Semin. Cell Dev. Biol. 38, 16–25 (2015)
Sadler, J.E.: Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67(1), 395–424 (1998). PMID: 9759493
Aziz, A., Harrop, S.P., Bishop, N.E.: DIA1R is an X-linked gene related to Deleted In Autism-1. PLoS One 6(1), e14534 (2011)
Marinov, G.K., Williams, B.A., McCue, K., Schroth, G.P., Gertz, J., Myers, R.M., Wold, B.J.: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24(3), 496–510 (2014)
Acknowledgement
This work was supported by BMBF (eMed Grant 031A428A) and DFG (FOR-2127 and SFB/TRR-55).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Görtler, F., Solbrig, S., Wettig, T., Oefner, P.J., Spang, R., Altenbuchinger, M. (2018). Loss-Function Learning for Digital Tissue Deconvolution. In: Raphael, B. (eds) Research in Computational Molecular Biology. RECOMB 2018. Lecture Notes in Computer Science(), vol 10812. Springer, Cham. https://doi.org/10.1007/978-3-319-89929-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-89929-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-89928-2
Online ISBN: 978-3-319-89929-9
eBook Packages: Computer ScienceComputer Science (R0)