Loss-Function Learning for Digital Tissue Deconvolution | SpringerLink
Skip to main content

Loss-Function Learning for Digital Tissue Deconvolution

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2018)

Abstract

The gene expression profile of a tissue averages the expression profiles of all cells in this tissue. Digital tissue deconvolution (DTD) addresses the following inverse problem: Given the expression profile y of a tissue, what is the cellular composition c of that tissue? If X is a matrix whose columns are reference profiles of individual cell types, the composition c can be computed by minimizing \(\mathcal {L}(y-Xc)\) for a given loss function \(\mathcal {L}\). Current methods use predefined all-purpose loss functions. They successfully quantify the dominating cells of a tissue, while often falling short in detecting small cell populations.

Here we use training data to learn the loss function \(\mathcal {L}\) along with the composition c. This allows us to adapt to application-specific requirements such as focusing on small cell populations or distinguishing phenotypically similar cell populations. Our method quantifies large cell fractions as accurately as existing methods and significantly improves the detection of small cell populations and the distinction of similar cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795), 1960–1964 (2006)

    Article  Google Scholar 

  2. Fridman, W.H., Pagès, F., Sautès-Fridman, C., Galon, J.: The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12(4), 298–306 (2012)

    Article  Google Scholar 

  3. Hackl, H., Charoentong, P., Finotello, F., Trajanoski, Z.: Computational genomics tools for dissecting tumour-immune cell interactions. Nat. Rev. Genet. 17(8), 441–458 (2016)

    Article  Google Scholar 

  4. Ibrahim, S.F., van den Engh, G.: Flow cytometry and cell sorting. In: Kumar, A., Galaev, I.Y., Mattiasson, B. (eds.) Cell Separation. Advances in Biochemical Engineering/Biotechnology, pp. 19–39. Springer, Heidelberg (2007). https://doi.org/10.1007/10_2007_073

    Chapter  Google Scholar 

  5. Bendall, S.C., Simonds, E.F., Qiu, P., El-ad, D.A., Krutzik, P.O., Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., et al.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030), 687–696 (2011)

    Article  Google Scholar 

  6. Wu, A.R., Neff, N.F., Kalisky, T., Dalerba, P., Treutlein, B., Rothenberg, M.E., Mburu, F.M., Mantalas, G.L., Sim, S., Clarke, M.F., et al.: Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11(1), 41–46 (2014)

    Article  Google Scholar 

  7. Lu, P., Nakorchevskiy, A., Marcotte, E.M.: Expression deconvolution: a reinterpretation of DNA microarray data reveals dynamic changes in cell populations. Proc. Nat. Acad. Sci. USA 100(18), 10370–10375 (2003)

    Article  Google Scholar 

  8. Abbas, A.R., Wolslegel, K., Seshasayee, D., Modrusan, Z., Clark, H.F.: Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One 4(7), e6098 (2009)

    Article  Google Scholar 

  9. Gong, T., Hartmann, N., Kohane, I.S., Brinkmann, V., Staedtler, F., Letzkus, M., Bongiovanni, S., Szustakowski, J.D.: Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples. PLoS One 6(11), e27156 (2011)

    Article  Google Scholar 

  10. Qiao, W., Quon, G., Csaszar, E., Yu, M., Morris, Q., Zandstra, P.W.: PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput. Biol. 8(12), e1002838 (2012)

    Article  Google Scholar 

  11. Altboum, Z., Steuerman, Y., David, E., Barnett-Itzhaki, Z., Valadarsky, L., Keren-Shaul, H., Meningher, T., Mendelson, E., Mandelboim, M., Gat-Viks, I., et al.: Digital cell quantification identifies global immune cell dynamics during influenza infection. Mol. Syst. Biol. 10(2), 720 (2014)

    Article  Google Scholar 

  12. Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., Alizadeh, A.A.: Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12(5), 453–457 (2015)

    Article  Google Scholar 

  13. Li, B., Severson, E., Pignon, J.C., Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J.C., Rodig, S., et al.: Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 17(1), 174 (2016)

    Article  Google Scholar 

  14. Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al.: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352(6282), 189–196 (2016)

    Article  Google Scholar 

  15. Chen, W.C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H.: pbdMPI: Programming with Big Data - Interface to MPI. R Package (2012). https://cran.r-project.org/package=pbdMPI

  16. Chen, W.C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H.: A Quick Guide for the pbdMPI Package. R Vignette (2012). https://cran.r-project.org/package=pbdMPI

  17. Georg, P., Richtmann, D., Wettig, T.: DD-\(\alpha \)AMG on QPACE 3. arXiv:1710.07041 (2017)

  18. Veillette, A., Bookman, M.A., Horak, E.M., Bolen, J.B.: The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55(2), 301–308 (1988)

    Article  Google Scholar 

  19. Addison, E.G., North, J., Bakhsh, I., Marden, C., Haq, S., Al-Sarraj, S., Malayeri, R., Wickremasinghe, R.G., Davies, J.K., Lowdell, M.W.: Ligation of CD8\(\alpha \) on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity. Immunology 116(3), 354–361 (2005)

    Article  Google Scholar 

  20. Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M.C., Biassoni, R., Moretta, L.: Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Ann. Rev. Immunol. 19(1), 197–223 (2001). PMID: 11244035

    Article  Google Scholar 

  21. Rickert, R.C., Rajewsky, K., Roes, J.: Impairment of T-cell-dependent B-cell responses and B-l cell development in CD19-deficient mice. Nature 376(6538), 352–355 (1995). https://doi.org/10.1038/376352a0

    Article  Google Scholar 

  22. Li, H., Ayer, L.M., Lytton, J., Deans, J.P.: Store-operated cation entry mediated by CD20 in membrane rafts. J. Biol. Chem. 278(43), 42427–42434 (2003)

    Article  Google Scholar 

  23. Hsueh, R.C., Scheuermann, R.H.: Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv. Immunol. 75, 283–316 (2000)

    Article  Google Scholar 

  24. Wienands, J., Schweikert, J., Wollscheid, B., Jumaa, H., Nielsen, P.J., Reth, M.: SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188(4), 791–795 (1998)

    Article  Google Scholar 

  25. Hori, S., Nomura, T., Sakaguchi, S.: Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609), 1057–1061 (2003)

    Article  Google Scholar 

  26. Haziot, A., Ferrero, E., Köntgen, F., Hijiya, N., Yamamoto, S., Silver, J., Stewart, C.L., Goyert, S.M.: Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4(4), 407–414 (1996)

    Article  Google Scholar 

  27. Sherr, C.J., Rettenmier, C.W., Sacca, R., Roussel, M.F., Look, A.T., Stanley, E.R.: The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF 1. Cell 41(3), 665–676 (1985)

    Article  Google Scholar 

  28. Wu, Y.J., La Pierre, D.P., Wu, J., Yee, A.J., Yang, B.B.: The interaction of versican with its binding partners. Cell Res. 15(7), 483–494 (2005)

    Article  Google Scholar 

  29. Du, W., Yang, W., Yee, A.J.: Roles of versican in cancer biology - tumorigenesis, progression and metastasis. Histol. Histopathol. 28(6), 701–713 (2013)

    Google Scholar 

  30. Gupta, A., Kaur, C.D., Jangdey, M., Saraf, S.: Matrix metalloproteinase enzymes and their naturally derived inhibitors: novel targets in photocarcinoma therapy. Ageing Res. Rev. 13, 65–74 (2014)

    Article  Google Scholar 

  31. Sneddon, J.B., Zhen, H.H., Montgomery, K., van de Rijn, M., Tward, A.D., West, R., Gladstone, H., Chang, H.Y., Morganroth, G.S., Oro, A.E., et al.: Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc. Nat. Acad. Sci. USA 103(40), 14842–14847 (2006)

    Article  Google Scholar 

  32. Gory-Faure, S., Prandini, M., Pointu, H., Roullot, V., Pignot-Paintrand, I., Vernet, M., Huber, P.: Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126(10), 2093–2102 (1999)

    Google Scholar 

  33. Shi, C., Lu, J., Wu, W., Ma, F., Georges, J., Huang, H., Balducci, J., Chang, Y., Huang, Y.: Endothelial cell-specific molecule 2 (ECSM2) localizes to cell-cell junctions and modulates bFGF-directed cell migration via the ERK-FAK pathway. PloS One 6(6), e21482 (2011)

    Article  Google Scholar 

  34. Haseloff, R.F., Dithmer, S., Winkler, L., Wolburg, H., Blasig, I.E.: Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects. Semin. Cell Dev. Biol. 38, 16–25 (2015)

    Article  Google Scholar 

  35. Sadler, J.E.: Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67(1), 395–424 (1998). PMID: 9759493

    Article  Google Scholar 

  36. Aziz, A., Harrop, S.P., Bishop, N.E.: DIA1R is an X-linked gene related to Deleted In Autism-1. PLoS One 6(1), e14534 (2011)

    Article  Google Scholar 

  37. Marinov, G.K., Williams, B.A., McCue, K., Schroth, G.P., Gertz, J., Myers, R.M., Wold, B.J.: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24(3), 496–510 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by BMBF (eMed Grant 031A428A) and DFG (FOR-2127 and SFB/TRR-55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Altenbuchinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Görtler, F., Solbrig, S., Wettig, T., Oefner, P.J., Spang, R., Altenbuchinger, M. (2018). Loss-Function Learning for Digital Tissue Deconvolution. In: Raphael, B. (eds) Research in Computational Molecular Biology. RECOMB 2018. Lecture Notes in Computer Science(), vol 10812. Springer, Cham. https://doi.org/10.1007/978-3-319-89929-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89929-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89928-2

  • Online ISBN: 978-3-319-89929-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics