Abstract
We revisit the online Unit Clustering problem in higher dimensions: Given a set of n points in \(\mathbb {R}^d\), that arrive one by one, partition the points into clusters (subsets) of diameter at most one, so as to minimize the number of clusters used. In this paper, we work in \(\mathbb {R}^d\) using the \(L_\infty \) norm. We show that the competitive ratio of any algorithm (deterministic or randomized) for this problem must depend on the dimension d. This resolves an open problem raised by Epstein and van Stee (WAOA 2008). We also give a randomized online algorithm with competitive ratio \(O(d^2)\) for Unit Clustering of integer points (i.e., points in \(\mathbb {Z}^d\), \(d\in \mathbb {N}\), under \(L_{\infty }\) norm). We complement these results with some additional lower bounds for related problems in higher dimensions.
Research supported in part by the NSF awards CCF-1422311 and CCF-1423615.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM J. Comput. 39(2), 361–370 (2009)
Azar, Y., Buchbinder, N., Hubert Chan, T.-H., Chen, S., Cohen, I.R., Gupta, A., Huang, Z., Kang, N., Nagarajan, V., Naor, J., Panigrahi, D.: Online algorithms for covering and packing problems with convex objectives. In: Proceedings of the 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 148–157. IEEE (2016)
Azar, Y., Bhaskar, U., Fleischer, L., Panigrahi, D.: Online mixed packing and covering. In: Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 85–100. SIAM (2013)
Azar, Y., Cohen, I.R., Roytman, A.: Online lower bounds via duality. In: Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1038–1050. SIAM (2017)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing. Math. Oper. Res. 34(2), 270–286 (2009)
Chan, T.M., Zarrabi-Zadeh, H.: A randomized algorithm for online unit clustering. Theory Comput. Syst. 45(3), 486–496 (2009)
Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)
Chrobak, M.: SIGACT news online algorithms column 13. SIGACT News Bull. 39(3), 96–121 (2008)
Csirik, J., Epstein, L., Imreh, C., Levin, A.: Online clustering with variable sized clusters. Algorithmica 65(2), 251–274 (2013)
Divéki, G., Imreh, C.: An online 2-dimensional clustering problem with variable sized clusters. Optim. Eng. 14(4), 575–593 (2013)
Divéki, G., Imreh, C.: Grid based online algorithms for clustering problems. In. Proceedings of the 15th IEEE International Symposium on Computational Intelligence and Informatics (CINTI), p. 159. IEEE (2014)
Ehmsen, M.R., Larsen, K.S.: Better bounds on online unit clustering. Theor. Comput. Sci. 500, 1–24 (2013)
Epstein, L., Levin, A., van Stee, R.: Online unit clustering: variations on a theme. Theor. Comput. Sci. 407(1–3), 85–96 (2008)
Epstein, L., van Stee, R.: On the online unit clustering problem. ACM Trans. Algorithms 7(1), 1–18 (2010)
Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 434–444 (1988)
Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)
Gupta, A., Nagarajan, V.: Approximating sparse covering integer programs online. Math. Oper. Res. 39(4), 998–1011 (2014)
Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)
Kawahara, J., Kobayashi, K.M.: An improved lower bound for one-dimensional online unit clustering. Theor. Comput. Sci. 600, 171–173 (2015)
Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13(1), 182–196 (1984)
Vazirani, V.: Approximation Algorithms. Springer, New York (2001). https://doi.org/10.1007/978-3-662-04565-7
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)
Zarrabi-Zadeh, H., Chan, T.M.: An improved algorithm for online unit clustering. Algorithmica 54(4), 490–500 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Dumitrescu, A., Tóth, C.D. (2018). Online Unit Clustering in Higher Dimensions. In: Solis-Oba, R., Fleischer, R. (eds) Approximation and Online Algorithms. WAOA 2017. Lecture Notes in Computer Science(), vol 10787. Springer, Cham. https://doi.org/10.1007/978-3-319-89441-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-89441-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-89440-9
Online ISBN: 978-3-319-89441-6
eBook Packages: Computer ScienceComputer Science (R0)