Computing Hierarchical Transition Graphs of Asynchronous Genetic Regulatory Networks | SpringerLink
Skip to main content

Computing Hierarchical Transition Graphs of Asynchronous Genetic Regulatory Networks

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2017)

Abstract

In the field of theoretical biology the study of the dynamics of the so-called gene regulatory networks is useful to follow the relationship between the expression of a gene and its dynamic regulatory effect on the cell fate. To date, most of the models developed for this purpose, applies the synchronous update schedule while reality is far from being so. On the other hand, the more realistic asynchronous update requires to compute all possible updates at each single instant, thus bearing a much greater computational load.

In the present work, we describe a novel method that addresses the problem of efficiently exploring the dynamics of a gene regulatory network with the asynchronous update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bérenguier, D., Chaouiya, C., Monteiro, P.T., Naldi, A., Remy, E., Thieffry, D., Tichit, L.: Dynamical modeling and analysis of large cellular regulatory networks. Chaos: Interdisc. J. Nonlinear Sci. 23(2), 025114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. In: 1993 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1993, Digest of Technical Papers, pp. 188–191. IEEE (1993)

    Google Scholar 

  3. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in \(n\) log \(n\) symbolic steps. Formal Methods Syst. Des. 28(1), 37–56 (2006)

    Article  MATH  Google Scholar 

  4. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  5. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1393–1399 (2011)

    Article  Google Scholar 

  6. Gabow, H.N.: Path-based depth-first search for strong and biconnected components. Inf. Process. Lett. 74(3–4), 107–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of mapk network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)

    Article  Google Scholar 

  8. Garg, A., Mohanram, K., Di Cara, A., De Micheli, G., Xenarios, I.: Modeling stochasticity and robustness in gene regulatory networks. Bioinformatics 25(12), i101–i109 (2009)

    Article  Google Scholar 

  9. Harvey, I., Bossomaier, T.: Time out of joint: attractors in asynchronous random Boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 67–75. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Hopfensitz, M., Müssel, C., Maucher, M.: HA Kestler: attractors in Boolean networks: a tutorial. Comput. Stat. 28(1), 19–36 (2013)

    Article  MATH  Google Scholar 

  11. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  12. Munro, I.: Efficient determination of the transitive closure of a directed graph. Inf. Process. Lett. 1(2), 56–58 (1971)

    Article  MATH  Google Scholar 

  13. Pedicini, M., Barrenäs, F., Clancy, T., Castiglione, F., Hovig, E., Kanduri, K., Santoni, D., Benson, M.: Combining network modeling and gene expression microarray analysis to explore the dynamics of Th1 and Th2 cell regulation. PLoS Comput. Biol. 6(12), e1001032 (2010)

    Article  MathSciNet  Google Scholar 

  14. Purdom, P.: A transitive closure algorithm. BIT Numer. Math. 10(1), 76–94 (1970)

    Article  MATH  Google Scholar 

  15. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Veliz-Cuba, A., Laubenbacher, R.: On the computation of fixed points in Boolean networks. J. Appl. Math. Comput. 39(1–2), 145–153 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F., He, L.: An efficient algorithm for computing attractors of synchronous and asynchronous Boolean networks. PLoS ONE 8(4), e60593 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pedicini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pedicini, M., Palumbo, M.C., Castiglione, F. (2018). Computing Hierarchical Transition Graphs of Asynchronous Genetic Regulatory Networks. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics