Abstract
One of the main problems in interval computations is solving systems of equations under interval uncertainty. Usually, interval computation packages consider united, tolerance, and control solutions. In this paper, we explain the practical need for algebraic (equality-type) solutions, when we look for solutions for which both sides are equal. In situations when such a solution is not possible, we provide a justification for extended-zero solutions, in which we ignore intervals of the type \([-a,a]\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chakraverty, S., Hladík, M., Behera, D.: Formal solution of an interval system of linear equations with an application in static responses of structures with interval forces. Appl. Math. Model. 50, 105–117 (2017)
Chakraverty, S., Hladík, M., Mahato, N.R.: A sign function approach to solve algebraically interval system of linear equations for nonnegative solutions. Fundam. Inform. 152, 13–31 (2017)
Jaulin, L., Kiefer, M., Dicrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0249-6
Kreinovich, V., Starks, S.A., Mayer, G.: On a theoretical justification of the choice of epsilon-inflation in PASCAL-XSC. Reliab. Comput. 3(4), 437–452 (1997)
Lakeyev, A.: On the computational complexity of the solution of linear systems with moduli. Reliab. Comput. 2(2), 125–131 (1996)
Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)
Nickel, K.: Die Auflösbarkeit linearer Kreisscheineb- und Intervall-Gleichingssyteme. Linear Algebra Appl. 44, 19–40 (1982)
Rabinovich, S.G.: Measurement Errors and Uncertainty: Theory and Practice. Springer, Berlin (2005). https://doi.org/10.1007/0-387-29143-1
Ratschek, K., Sauer, W.: Linear interval equations. Computing 25, 105–115 (1982)
Sevastjanov, P., Dymova, L.: Fuzzy solution of interval linear equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1392–1399. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68111-3_147
Sevastjanov, P., Dymova, L.: A new method for solving interval and fuzzy equations: linear case. Inf. Sci. 17, 925–937 (2009)
Shary, S.P.: Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of Kaucher arithmetic. Reliab. Comput. 2(1), 3–33 (1996)
Shary, S.P.: Algebraic approach in the ‘outer problem’ for interval linear equations. Reliab. Comput. 3(2), 103–135 (1997)
Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliab. Comput. 8, 321–418 (2002)
Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC, Boca Raton (2011)
Acknowledgments
This work was supported in part by the grant DEC-2013/11/B/ST6/00960 from the National Science Center (Poland), by the US National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721, and by an award “UTEP and Prudential Actuarial Science Academy and Pipeline Initiative” from Prudential Foundation.
The authors are thankful to the anonymous referees for valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Dymova, L., Sevastjanov, P., Pownuk, A., Kreinovich, V. (2018). Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations and for Extended-Zero Solutions. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-78054-2_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78053-5
Online ISBN: 978-3-319-78054-2
eBook Packages: Computer ScienceComputer Science (R0)