Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations and for Extended-Zero Solutions | SpringerLink
Skip to main content

Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations and for Extended-Zero Solutions

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10778))

  • 1048 Accesses

Abstract

One of the main problems in interval computations is solving systems of equations under interval uncertainty. Usually, interval computation packages consider united, tolerance, and control solutions. In this paper, we explain the practical need for algebraic (equality-type) solutions, when we look for solutions for which both sides are equal. In situations when such a solution is not possible, we provide a justification for extended-zero solutions, in which we ignore intervals of the type \([-a,a]\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chakraverty, S., Hladík, M., Behera, D.: Formal solution of an interval system of linear equations with an application in static responses of structures with interval forces. Appl. Math. Model. 50, 105–117 (2017)

    Article  MathSciNet  Google Scholar 

  2. Chakraverty, S., Hladík, M., Mahato, N.R.: A sign function approach to solve algebraically interval system of linear equations for nonnegative solutions. Fundam. Inform. 152, 13–31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jaulin, L., Kiefer, M., Dicrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0249-6

    Book  Google Scholar 

  4. Kreinovich, V., Starks, S.A., Mayer, G.: On a theoretical justification of the choice of epsilon-inflation in PASCAL-XSC. Reliab. Comput. 3(4), 437–452 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lakeyev, A.: On the computational complexity of the solution of linear systems with moduli. Reliab. Comput. 2(2), 125–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  7. Nickel, K.: Die Auflösbarkeit linearer Kreisscheineb- und Intervall-Gleichingssyteme. Linear Algebra Appl. 44, 19–40 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rabinovich, S.G.: Measurement Errors and Uncertainty: Theory and Practice. Springer, Berlin (2005). https://doi.org/10.1007/0-387-29143-1

    MATH  Google Scholar 

  9. Ratschek, K., Sauer, W.: Linear interval equations. Computing 25, 105–115 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sevastjanov, P., Dymova, L.: Fuzzy solution of interval linear equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1392–1399. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68111-3_147

    Chapter  Google Scholar 

  11. Sevastjanov, P., Dymova, L.: A new method for solving interval and fuzzy equations: linear case. Inf. Sci. 17, 925–937 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shary, S.P.: Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of Kaucher arithmetic. Reliab. Comput. 2(1), 3–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shary, S.P.: Algebraic approach in the ‘outer problem’ for interval linear equations. Reliab. Comput. 3(2), 103–135 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliab. Comput. 8, 321–418 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC, Boca Raton (2011)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grant DEC-2013/11/B/ST6/00960 from the National Science Center (Poland), by the US National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721, and by an award “UTEP and Prudential Actuarial Science Academy and Pipeline Initiative” from Prudential Foundation.

The authors are thankful to the anonymous referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Pownuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dymova, L., Sevastjanov, P., Pownuk, A., Kreinovich, V. (2018). Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations and for Extended-Zero Solutions. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics