Abstract
The paper presents a multi-objective load balancing algorithm based on Extremal Optimization in execution of distributed programs. The Extremal Optimization aims in defining task migration as a means for improving balance in loading executive processors with program tasks. In the proposed multi-objective approach three objectives relevant in processor load balancing for distributed applications are jointly optimized. These objectives include: balance in computational load of distributed processors, total volume of inter-processor communication between tasks and task migration metrics. In the proposed Extremal Optimization algorithms a special approach called Guided Search is applied in selection of a new partial solution to be improved. It is supported by some knowledge of the problem in terms of computational and communication loads influenced by task migration. The proposed algorithms are assessed by simulation experiments with distributed execution of program macro data flow graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from co-evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999). Morgan Kaufmann, San Francisco, pp. 825–832 (1999)
Barker, K., Chrisochoides, N.: An evaluation of a framework for the dynamic load balancing of highly adaptive and irregular parallel applications. In: Proceedings of the ACM/IEEE Conference on Supercomputing, Phoenix. ACM Press (2003)
De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Load balancing in distributed applications based on extremal optimization. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 52–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_6
De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Improving extremal optimization in load balancing by local search. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 51–62. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45523-4_5
De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Extremal optimization applied to load balancing in execution of distributed programs. Appl. Soft Comput. 30, 501–513 (2015)
Taxicab geometry. https://en.wikipedia.org/wiki/Taxicab_geometry. Accessed 20 Nov 2017
Xu, C., Lau, Francis C.M.: Load Balancing in Parallel Computers: Theory and Practice. Kluwer Academic Publishers, Dordrecht (1997)
Khan, R.Z., Ali, J.: Classification of task partitioning and load balancing strategies in distributed parallel computing systems. Int. J. Comput. Appl. 60(17), 48–53 (2012)
Mishra, M., Agarwal, S., Mishra, P., Singh, S.: Comparative analysis of various evolutionary techniques of load balancing: a review. Int. J. Comput. Appl. 63(15), 8–13 (2013)
Sneppen, K., et al.: Evolution as a self-organized critical phenomenon. Proc. Nat. Acad. Sci. 92, 5209–5213 (1995)
Zeigler, B.: Hierarchical, modular discrete-event modelling in an object-oriented environment. Simulation 49(5), 219–230 (1987)
Roig, C., Ripoll, A., Guirado, F.: A new task graph model for mapping message passing applications. IEEE Trans. Parallel Distrib. Syst. 18(12), 1740–1753 (2007)
Collette, Y., Siarry, P.: Multi-objective Optimization: Principles and Case Studies. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-08883-8. p. 293
Ehrgott, M.: Multi-criteria Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27659-9. p. 324
Coello Coello, C.A.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1, 28–36 (2006)
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-36797-2. p. 800
Chen, M.-R., Lu, Y.-Z.: A novel elitist multi-objective optimization algorithm: multi-objective extremal optimization. Shanghai Jiao Tong University
Ahmed, E., Elettreby, M.F.: On multi-objective evolution model. Int. J. Mod. Phys. C 15(9), 1189–1195 (2004)
Gómez-Meneses, P., Randall, M., Lewis, A.: A hybrid multi-objective extremal optimisation approach for multi-objective combinatorial optimisation problems. Bond University, Griffith University, Australia (2010)
Galski, R.L., de Sousa, F.L., Ramos, F.M., Muraoka, I.: Spacecraft thermal design with the generalized extremal optimization algorithm. In: Proceedings of Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004
Chen, M., Lu, Y., Yang, G.: Multi-objective extremal optimization with applications to engineering design. J. Zhejiang Univ. Sci. A 8(12), 1905–1911 (2007)
De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: A multiobjective extremal optimization algorithm for efficient mapping in grids. In: Mehnen, J., Köppen, M., Saad, A., Tiwari, A. (eds.) Applications of Soft Computing. Advances in Intelligent and Soft Computing. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89619-7_36
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M. (2018). Multi-Objective Extremal Optimization in Processor Load Balancing for Distributed Programs. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-78054-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78053-5
Online ISBN: 978-3-319-78054-2
eBook Packages: Computer ScienceComputer Science (R0)