Multi-Objective Extremal Optimization in Processor Load Balancing for Distributed Programs | SpringerLink
Skip to main content

Multi-Objective Extremal Optimization in Processor Load Balancing for Distributed Programs

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10778))

  • 1061 Accesses

Abstract

The paper presents a multi-objective load balancing algorithm based on Extremal Optimization in execution of distributed programs. The Extremal Optimization aims in defining task migration as a means for improving balance in loading executive processors with program tasks. In the proposed multi-objective approach three objectives relevant in processor load balancing for distributed applications are jointly optimized. These objectives include: balance in computational load of distributed processors, total volume of inter-processor communication between tasks and task migration metrics. In the proposed Extremal Optimization algorithms a special approach called Guided Search is applied in selection of a new partial solution to be improved. It is supported by some knowledge of the problem in terms of computational and communication loads influenced by task migration. The proposed algorithms are assessed by simulation experiments with distributed execution of program macro data flow graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from co-evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999). Morgan Kaufmann, San Francisco, pp. 825–832 (1999)

    Google Scholar 

  2. Barker, K., Chrisochoides, N.: An evaluation of a framework for the dynamic load balancing of highly adaptive and irregular parallel applications. In: Proceedings of the ACM/IEEE Conference on Supercomputing, Phoenix. ACM Press (2003)

    Google Scholar 

  3. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Load balancing in distributed applications based on extremal optimization. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 52–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_6

    Chapter  Google Scholar 

  4. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Improving extremal optimization in load balancing by local search. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 51–62. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45523-4_5

    Google Scholar 

  5. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Extremal optimization applied to load balancing in execution of distributed programs. Appl. Soft Comput. 30, 501–513 (2015)

    Article  Google Scholar 

  6. Taxicab geometry. https://en.wikipedia.org/wiki/Taxicab_geometry. Accessed 20 Nov 2017

  7. Xu, C., Lau, Francis C.M.: Load Balancing in Parallel Computers: Theory and Practice. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  8. Khan, R.Z., Ali, J.: Classification of task partitioning and load balancing strategies in distributed parallel computing systems. Int. J. Comput. Appl. 60(17), 48–53 (2012)

    Google Scholar 

  9. Mishra, M., Agarwal, S., Mishra, P., Singh, S.: Comparative analysis of various evolutionary techniques of load balancing: a review. Int. J. Comput. Appl. 63(15), 8–13 (2013)

    Google Scholar 

  10. Sneppen, K., et al.: Evolution as a self-organized critical phenomenon. Proc. Nat. Acad. Sci. 92, 5209–5213 (1995)

    Article  Google Scholar 

  11. Zeigler, B.: Hierarchical, modular discrete-event modelling in an object-oriented environment. Simulation 49(5), 219–230 (1987)

    Article  Google Scholar 

  12. Roig, C., Ripoll, A., Guirado, F.: A new task graph model for mapping message passing applications. IEEE Trans. Parallel Distrib. Syst. 18(12), 1740–1753 (2007)

    Article  Google Scholar 

  13. Collette, Y., Siarry, P.: Multi-objective Optimization: Principles and Case Studies. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-08883-8. p. 293

    MATH  Google Scholar 

  14. Ehrgott, M.: Multi-criteria Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27659-9. p. 324

    MATH  Google Scholar 

  15. Coello Coello, C.A.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1, 28–36 (2006)

    Article  Google Scholar 

  16. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-36797-2. p. 800

    MATH  Google Scholar 

  17. Chen, M.-R., Lu, Y.-Z.: A novel elitist multi-objective optimization algorithm: multi-objective extremal optimization. Shanghai Jiao Tong University

    Google Scholar 

  18. Ahmed, E., Elettreby, M.F.: On multi-objective evolution model. Int. J. Mod. Phys. C 15(9), 1189–1195 (2004)

    Article  Google Scholar 

  19. Gómez-Meneses, P., Randall, M., Lewis, A.: A hybrid multi-objective extremal optimisation approach for multi-objective combinatorial optimisation problems. Bond University, Griffith University, Australia (2010)

    Google Scholar 

  20. Galski, R.L., de Sousa, F.L., Ramos, F.M., Muraoka, I.: Spacecraft thermal design with the generalized extremal optimization algorithm. In: Proceedings of Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004

    Google Scholar 

  21. Chen, M., Lu, Y., Yang, G.: Multi-objective extremal optimization with applications to engineering design. J. Zhejiang Univ. Sci. A 8(12), 1905–1911 (2007)

    Article  MATH  Google Scholar 

  22. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: A multiobjective extremal optimization algorithm for efficient mapping in grids. In: Mehnen, J., Köppen, M., Saad, A., Tiwari, A. (eds.) Applications of Soft Computing. Advances in Intelligent and Soft Computing. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89619-7_36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eryk Laskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M. (2018). Multi-Objective Extremal Optimization in Processor Load Balancing for Distributed Programs. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics