Scheduling Parallelizable Jobs Online to Maximize Throughput | SpringerLink
Skip to main content

Scheduling Parallelizable Jobs Online to Maximize Throughput

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

  • 2844 Accesses

Abstract

In this paper, we consider scheduling parallelizable jobs online to maximize the throughput or profit of the schedule. In particular, a set of n jobs arrive online and each job \(J_i\) arriving at time \(r_i\) has an associated function \(p_i(t)\) which is the profit obtained for finishing job \(J_i\) at time \(t+r_i\). Each job can have its own arbitrary non-increasing profit function. We consider the case where each job is a parallel job that can be represented as a directed acyclic graph (DAG). We give the first non-trivial results for the profit scheduling problem for DAG jobs and show O(1)-competitive algorithms using resource augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. OpenMP: OpenMP Application Program Interface v4.0, July 2013. http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

  2. Intel: Intel CilkPlus, September 2013. https://www.cilkplus.org/

  3. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism. O’Reilly Media, Inc., Sebastopol (2010)

    Google Scholar 

  4. Campbell, C., Miller, A.: A Parallel Programming with Microsoft Visual C++: Design Patterns for Decomposition and Coordination on Multicore Architectures. Microsoft Press, Redmond (2011)

    Google Scholar 

  5. Baruah, S.K., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L.E., Shasha, D., Wang, F.: On the competitiveness of on-line real-time task scheduling. Real-Time Syst. 4(2), 125–144 (1992)

    Article  MATH  Google Scholar 

  6. Baruah, S.K., Koren, G., Mishra, B., Raghunathan, A., Rosier, L.E., Shasha, D., Wang, F.: On-line scheduling in the presence of overload. In: Symposium on Foundations of Computer Science, pp. 100–110 (1991)

    Google Scholar 

  7. Koren, G., Shasha, D.: Dover: an optimal on-line scheduling algorithm for overloaded uniprocessor real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor. Comput. Sci. 130(1), 5–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalyanasundaram, B., Pruhs, K.: Fault-tolerant real-time scheduling. Algorithmica 28(1), 125–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koren, G., Shasha, D.: MOCA: a multiprocessor on-line competitive algorithm for real-time system scheduling. Theor. Comput. Sci. 128(1&2), 75–97 (1994)

    Article  MATH  Google Scholar 

  11. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  12. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bansal, N., Chan, H.-L., Pruhs, K.: Competitive algorithms for due date scheduling. Algorithmica 59(4), 569–582 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pruhs, K., Stein, C.: How to schedule when you have to buy your energy. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM 2010. LNCS, vol. 6302, pp. 352–365. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15369-3_27

    Chapter  Google Scholar 

  15. Im, S., Moseley, B.: General profit scheduling and the power of migration on heterogeneous machines. In: Symposium on Parallelism in Algorithms and Architectures (2016)

    Google Scholar 

  16. Lucier, B., Menache, I., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-sensitive jobs: extended abstract. In: 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2013, pp. 305–314 (2013)

    Google Scholar 

  17. Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., Gill, C.D.: Parallel real-time scheduling of dags. IEEE Trans. Parallel Distrib. Syst. 25(12), 3242–3252 (2014)

    Article  Google Scholar 

  18. Li, J., Chen, J.-J., Agrawal, K., Lu, C., Gill, C.D., Saifullah, A.: Analysis of federated and global scheduling for parallel real-time tasks. In: ECRTS 2014, pp. 85–96 (2014)

    Google Scholar 

  19. Agrawal, K., He, Y., Hsu, W.J., Leiserson, C.E.: Adaptive task scheduling with parallelism feedback. In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP) (2006)

    Google Scholar 

  20. Agrawal, K., He, Y., Leiserson, C.E.: Adaptive work stealing with parallelism feedback. In: Proceedings of the Annual ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), March 2007

    Google Scholar 

  21. He, Y., Hsu, W.-J., Leiserson, C.E.: Provably efficient online non-clairvoyant adaptive scheduling. In: IPDPS (2007)

    Google Scholar 

  22. Ma, L., Chamberlain, R.D., Agrawal, K.: Performance modeling for highly-threaded many-core GPUs. In: Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 84–91, June 2014

    Google Scholar 

  23. Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallel DAG jobs online to minimize average flow time. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp. 176–189 (2016)

    Google Scholar 

  24. Robert, J., Schabanel, N.: Non-clairvoyant scheduling with precedence constraints. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 491–500 (2008)

    Google Scholar 

  25. Baruah, S.: Improved multiprocessor global schedulability analysis of sporadic DAG task systems. In: 26th Euromicro Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain, 8–11 July 2014, pp. 97–105 (2014)

    Google Scholar 

  26. Baruah, S.: Federated scheduling of sporadic DAG task systems. In: 2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015, Hyderabad, India, 25–29 May 2015, pp. 179–186 (2015)

    Google Scholar 

  27. Baruah, S.: The federated scheduling of systems of conditional sporadic DAG tasks. In: 2015 International Conference on Embedded Software, EMSOFT 2015, Amsterdam, Netherlands, 4–9 October 2015, pp. 1–10 (2015)

    Google Scholar 

  28. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A.: The global EDF scheduling of systems of conditional sporadic DAG tasks. In: 27th Euromicro Conference on Real-Time Systems, ECRTS 2015, pp. 222–231 (2015)

    Google Scholar 

  29. Baruah, S.: The federated scheduling of constrained-deadline sporadic DAG task systems. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE 2015, pp. 1323–1328 (2015)

    Google Scholar 

  30. Li, J., Agrawal, K., Lu, C., Gill, C.: Analysis of global EDF for parallel tasks. In: ECRTS (2013)

    Google Scholar 

  31. Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., Wiese, A.: Feasibility analysis in the sporadic DAG task model. In: ECRTS (2013)

    Google Scholar 

  32. Svensson, O.: Conditional hardness of precedence constrained scheduling on identical machines. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 745–754 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, K., Li, J., Lu, K., Moseley, B. (2018). Scheduling Parallelizable Jobs Online to Maximize Throughput. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics