Temperature Forecasting for Energy Saving in Smart Buildings Based on Fuzzy Cognitive Map | SpringerLink
Skip to main content

Temperature Forecasting for Energy Saving in Smart Buildings Based on Fuzzy Cognitive Map

  • Conference paper
  • First Online:
Automation 2018 (AUTOMATION 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Included in the following conference series:

  • 2793 Accesses

Abstract

One of the way to save energy in smart buildings is the prediction of the variables that affect energy consumption. The aim of this paper is the application of fuzzy cognitive map for indoor temperature forecasting. Fuzzy cognitive map is a soft computing technique that describes the analyzed problem as a set of concepts and connections between them. The developed evolutionary algorithm for fuzzy cognitive maps learning is used to select the most significant concepts (sensors in a smart building) and determine the weights of the connections. The data captured in the SMLsystem created at the Universidad CEU Cardenal Herrera for participation in the Solar Decathlon 2013 competition were used in the experiments. Results show a high forecasting accuracy and they could be used to control smart building and to reduce the number of required sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilar, J.: Dynamic random fuzzy cognitive maps. Computación y Sistemas 7(4), 260–270 (2004)

    Google Scholar 

  2. Borisov, V.V., Kruglov, V.V., Fedulov, A.C.: Fuzzy Models Networks. Publishing house Telekom, Moscow (2004). (in Russian)

    Google Scholar 

  3. Chi, Y., Liu, J.: Learning of fuzzy cognitive maps with varying densities using multi-objective evolutionary algorithms. IEEE Trans. Fuzzy Syst. 24(1), 71–81 (2016)

    Article  Google Scholar 

  4. Christoforou, A., Andreou, A.S.: A framework for static and dynamic analysis of multi-layer fuzzy cognitive maps. Neurocomputing 232, 133–145 (2017)

    Article  Google Scholar 

  5. Ferreira, P., Ruano, A., Silva, S., Conceição, E.: Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build. 55, 238–251 (2012)

    Article  Google Scholar 

  6. Homenda, W., Jastrzebska, A.: Clustering techniques for fuzzy cognitive map design for time series modeling. Neurocomputing 232, 3–15 (2017)

    Article  Google Scholar 

  7. Homenda, W., Jastrzebska, A., Pedrycz, W.: Nodes selection criteria for fuzzy cognitive maps designed to model time series. In: AISC 323. Springer, Cham (2015)

    Google Scholar 

  8. Jastriebow, A., Poczęta, K.: Analysis of multi-step algorithms for cognitive maps learning. Bull. Polish Acad. Sci. Tech. Sci. 62(4), 735–741 (2014)

    Google Scholar 

  9. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)

    Article  MATH  Google Scholar 

  10. Kubuś, Ł., Poczęta, K., Yastrebov, A.: A new learning approach for fuzzy cognitive maps based on system performance indicators. In: 2016 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1398–1404 (2016)

    Google Scholar 

  11. Kumar, S., Pal, S.K., Singh, R.P.: Intelligent energy conservation: indoor temperature forecasting with extreme learning machine. In: Corchado Rodriguez, J., Mitra, S., Thampi, S., El-Alfy, E.S. (eds.) Intelligent Systems Technologies and Applications 2016, ISTA 2016. Advances in Intelligent Systems and Computing, vol. 530. Springer, Cham (2016)

    Google Scholar 

  12. Mateo, F., Carrasco, J.J., Sellami, A., Millán-Giraldo, M., Domínguez, M., Soria-Olivas, E.: Machine learning methods to forecast temperature in buildings. Exp. Syst. Appl. 40(4), 1061–1068 (2013)

    Article  Google Scholar 

  13. Mateou, N.H., Andreou, A.S.: A framework for developing intelligent decision support systems using evolutionary fuzzy cognitive maps. J. Intell. Fuzzy Syst. 19(2), 150–171 (2008)

    MATH  Google Scholar 

  14. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996)

    Book  MATH  Google Scholar 

  15. Papageorgiou, E.I., Poczeta, K.: A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks. Neurocomputing 232, 113–121 (2017)

    Article  Google Scholar 

  16. Poczeta, K., Kubuś, Ł., Yastrebov, A.: An evolutionary algorithm based on graph theory metrics for fuzzy cognitive maps learning. In: Sixth International Conference on Theory and Practice of Natural Computing, TPNC 2017. LNCS, Prague, Czech Republic, 18–20 December (2017)

    Google Scholar 

  17. Salmeron, J.L.: Fuzzy cognitive maps for artificial emotions forecasting. Appl. Soft Comput. 12, 3704–3710 (2012)

    Article  Google Scholar 

  18. Silov, V.B.: Strategic decision-making in a fuzzy environment. In: INPRO-RES, Moscow (1995). (in Russian)

    Google Scholar 

  19. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153(3), 371–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stach, W., Pedrycz, W., Kurgan, L.A.: Learning of fuzzy cognitive maps using density estimate. IEEE Trans. Syst. Man Cybern. Part B 42(3), 900–912 (2012)

    Article  Google Scholar 

  21. Słoń, G.: Application of models of relational fuzzy cognitive maps for prediction of work of complex systems. In: LNAI, vol. 8467, pp. 307–318. Springer, Heidelberg (2014)

    Google Scholar 

  22. Wilson, R.J.: An Introduction to Graph Theory. Pearson Education, India (1970)

    Google Scholar 

  23. Zamora-Martinez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: On-line learning of indoor temperature forecasting models towards energy efficiency. Energy Build. 83, 162–172 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Poczęta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poczęta, K., Kubuś, Ł., Yastrebov, A., Papageorgiou, E.I. (2018). Temperature Forecasting for Energy Saving in Smart Buildings Based on Fuzzy Cognitive Map. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics