NOA: A Search Engine for Reusable Scientific Images Beyond the Life Sciences | SpringerLink
Skip to main content

NOA: A Search Engine for Reusable Scientific Images Beyond the Life Sciences

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2018)

Abstract

NOA is a search engine for scientific images from open access publications based on full text indexing of all text referring to the images and filtering for disciplines and image type. Images will be annotated with Wikipedia categories for better discoverability and for uploading to WikiCommons. Currently we have indexed approximately 2,7 Million images from over 710 000 scientific papers from all fields of science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, S., Yu, H.: FigSum: automatically generating structured text summaries for figures in biomedical literature. In: AMIA Annual Symposium Proceedings. AMIA Symposium 2009, pp. 6–10, November 2009

    Google Scholar 

  2. Hearst, M.A., Divoli, A., Guturu, H., Ksikes, A., Nakov, P., Wooldridge, M.A., Ye, J.: BioText search engine: beyond abstract search. Bioinformatics 23(16), 2196–2197 (2007). https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btm301

    Article  Google Scholar 

  3. Kim, D., Ramesh, B.P., Yu, H.: Automatic figure classification in bioscience literature. J. Biomed. Inf. 44(5), 848–858 (2011). http://www.sciencedirect.com/science/article/pii/S1532046411000943

    Article  Google Scholar 

  4. Kim, D., Yu, H.: Hierarchical image classification in the bioscience literature. In: AMIA Annual Symposium Proceedings 2009, pp. 327–331 (2009). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815366/

  5. Lee, P., West, J.D., Howe, B.: Viziometrics: analyzing visual information in the scientific literature. IEEE Trans. Big Data (2017)

    Google Scholar 

  6. Liu, F., Jenssen, T.K., Nygaard, V., Sack, J., Hovig, E.: FigSearch: a figure legend indexing and classification system. Bioinformatics 20(16), 2880–2882 (2004). https://academic.oup.com/bioinformatics/article/20/16/2880/236814/FigSearch-a-figure-legend-indexing-and

    Article  Google Scholar 

  7. Rafkind, B., Lee, M., Chang, S.F., Yu, H.: Exploring text and image features to classify images in bioscience literature. In: Proceedings of the Workshop on Linking Natural Language Processing and Biology: Towards Deeper Biological Literature Analysis, BioNLP 2006, pp. 73–80. Association for Computational Linguistics, Stroudsburg (2006). http://dl.acm.org/citation.cfm?id=1567619.1567632

  8. Xu, S., Krauthammer, M.: A new pivoting and iterative text detection algorithm for biomedical images. J. Biomed. Inf. 43(6), 924–931 (2010). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265968/

    Article  Google Scholar 

  9. Xu, S., McCusker, J., Krauthammer, M.: Yale Image Finder (YIF): a new search engine for retrieving biomedical images. Bioinformatics 24(17), 1968–1970 (2008). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732221/

    Article  Google Scholar 

  10. Yu, H.: Towards answering biological questions with experimental evidence: automatically identifying text that summarize image content in full-text articles. In: AMIA Annual Symposium Proceedings, AMIA Symposium, pp. 834–838 (2006)

    Google Scholar 

  11. Yu, H., Lee, M.: BioEx - a novel user-interface that accesses images from abstract sentences (2006)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Frieda Josi, Lambert Heller, Ina Blümel for many helpful comments. This research was funded by the DFG under grant no. WA 1506/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wartena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charbonnier, J., Sohmen, L., Rothman, J., Rohden, B., Wartena, C. (2018). NOA: A Search Engine for Reusable Scientific Images Beyond the Life Sciences. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds) Advances in Information Retrieval. ECIR 2018. Lecture Notes in Computer Science(), vol 10772. Springer, Cham. https://doi.org/10.1007/978-3-319-76941-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76941-7_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76940-0

  • Online ISBN: 978-3-319-76941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics