Abstract
NOA is a search engine for scientific images from open access publications based on full text indexing of all text referring to the images and filtering for disciplines and image type. Images will be annotated with Wikipedia categories for better discoverability and for uploading to WikiCommons. Currently we have indexed approximately 2,7 Million images from over 710 000 scientific papers from all fields of science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., Yu, H.: FigSum: automatically generating structured text summaries for figures in biomedical literature. In: AMIA Annual Symposium Proceedings. AMIA Symposium 2009, pp. 6–10, November 2009
Hearst, M.A., Divoli, A., Guturu, H., Ksikes, A., Nakov, P., Wooldridge, M.A., Ye, J.: BioText search engine: beyond abstract search. Bioinformatics 23(16), 2196–2197 (2007). https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btm301
Kim, D., Ramesh, B.P., Yu, H.: Automatic figure classification in bioscience literature. J. Biomed. Inf. 44(5), 848–858 (2011). http://www.sciencedirect.com/science/article/pii/S1532046411000943
Kim, D., Yu, H.: Hierarchical image classification in the bioscience literature. In: AMIA Annual Symposium Proceedings 2009, pp. 327–331 (2009). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815366/
Lee, P., West, J.D., Howe, B.: Viziometrics: analyzing visual information in the scientific literature. IEEE Trans. Big Data (2017)
Liu, F., Jenssen, T.K., Nygaard, V., Sack, J., Hovig, E.: FigSearch: a figure legend indexing and classification system. Bioinformatics 20(16), 2880–2882 (2004). https://academic.oup.com/bioinformatics/article/20/16/2880/236814/FigSearch-a-figure-legend-indexing-and
Rafkind, B., Lee, M., Chang, S.F., Yu, H.: Exploring text and image features to classify images in bioscience literature. In: Proceedings of the Workshop on Linking Natural Language Processing and Biology: Towards Deeper Biological Literature Analysis, BioNLP 2006, pp. 73–80. Association for Computational Linguistics, Stroudsburg (2006). http://dl.acm.org/citation.cfm?id=1567619.1567632
Xu, S., Krauthammer, M.: A new pivoting and iterative text detection algorithm for biomedical images. J. Biomed. Inf. 43(6), 924–931 (2010). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265968/
Xu, S., McCusker, J., Krauthammer, M.: Yale Image Finder (YIF): a new search engine for retrieving biomedical images. Bioinformatics 24(17), 1968–1970 (2008). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732221/
Yu, H.: Towards answering biological questions with experimental evidence: automatically identifying text that summarize image content in full-text articles. In: AMIA Annual Symposium Proceedings, AMIA Symposium, pp. 834–838 (2006)
Yu, H., Lee, M.: BioEx - a novel user-interface that accesses images from abstract sentences (2006)
Acknowledgements
We would like to thank Frieda Josi, Lambert Heller, Ina Blümel for many helpful comments. This research was funded by the DFG under grant no. WA 1506/4-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Charbonnier, J., Sohmen, L., Rothman, J., Rohden, B., Wartena, C. (2018). NOA: A Search Engine for Reusable Scientific Images Beyond the Life Sciences. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds) Advances in Information Retrieval. ECIR 2018. Lecture Notes in Computer Science(), vol 10772. Springer, Cham. https://doi.org/10.1007/978-3-319-76941-7_78
Download citation
DOI: https://doi.org/10.1007/978-3-319-76941-7_78
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76940-0
Online ISBN: 978-3-319-76941-7
eBook Packages: Computer ScienceComputer Science (R0)