Abstract
This paper proposes a new form of diagnosis and repair based on reinforcement learning. Self-interested agents learn locally which agents may provide a low quality of service for a task. The correctness of learned assessments of other agents is proved under conditions on exploration versus exploitation of the learned assessments.
Compared to collaborative multi-agent diagnosis, the proposed learning-based approach is not very efficient. However, it does not depend on collaboration with other agents. The proposed learning based diagnosis approach may therefore provide an incentive to collaborate in the execution of tasks, and in diagnosis if tasks are executed in a suboptimal way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In smart energy networks the tasks are the directions in which energy must flow.
References
Bellman, R.: A markovian decision process. J. Math. Mech. 6, 679–684 (1957)
Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: Sequential optimality and coordination in multiagent systems. Math. Oper. Res. 6(4), 819–840 (2002)
Boutilier, C.: Sequential optimality and coordination in multiagent systems. In: IJCAI, pp. 478–485 (1999)
Console, L., Torasso, P.: Hypothetical reasoning in causal models. Int. J. Intell. Syst. 5, 83–124 (1990)
Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Comput. Intell. 7, 133–141 (1991)
Davis, R.: Diagnostic reasoning based on structure and behaviour. Artif. Intell. 24, 347–410 (1984)
de Jonge, F., Roos, N.: Plan-execution health repair in a multi-agent system. In: PlanSIG 2004 (2004)
de Jonge, F., Roos, N., Aldewereld, H.: MATES 2007. LNCS, vol. 4687. Springer, Heidelberg (2007)
de Jonge, F., Roos, N., Aldewereld, H.: Temporal diagnosis of multi-agent plan execution without an explicit representation of time. In: BNAIC-07 (2007)
de Jonge, F., Roos, N., van den Herik, J.: Keeping plan execution healthy. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 377–387. Springer, Heidelberg (2005). https://doi.org/10.1007/11559221_38
de Jonge, F., Roos, N., Witteveen, C.: Diagnosis of multi-agent plan execution. In: Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196, pp. 86–97. Springer, Heidelberg (2006). https://doi.org/10.1007/11872283_8
de Jonge, F., Roos, N., Witteveen, C.: Primary and secondary plan diagnosis. In: The International Workshop on Principles of Diagnosis, DX-06 (2006)
Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, New York (1960)
Kalech, M., Kaminka, G.A.: On the design of social diagnosis algorithms for multi-agent teams. In: IJCAI-03, pp. 370–375 (2003)
Kalech, M., Kaminka, G.A.: Diagnosing a team of agents: scaling-up. In: AAMAS 2005, pp. 249–255 (2005)
Kalech, M., Kaminka, G.A.: Towards model-based diagnosis of coordination failures. In: AAAI 2005, pp. 102–107 (2005)
Kalech, M., Kaminka, G.A.: On the design of coordination diagnosis algorithms for teams of situated agents. Artif. Intell. 171, 491–513 (2007)
Kalech, M., Kaminka, G.A.: Coordination diagnostic algorithms for teams of situated agents: scaling up. Comput. Intell. 27(3), 393–421 (2011)
de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artif. Intell. 56, 197–222 (1992)
de Kleer, J., Williams, B.C.: Diagnosing with behaviour modes. In: IJCAI 89, pp. 104–109 (1989)
Micalizio, R.: A distributed control loop for autonomous recovery in a multi-agent plan. In: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, (IJCAI-09), pp. 1760–1765 (2009)
Micalizio, R.: Action failure recovery via model-based diagnosis and conformant planning. Comput. Intell. 29(2), 233–280 (2013)
Micalizio, R., Torasso, P.: On-line monitoring of plan execution: a distributed approach. Knowl. Based Syst. 20, 134–142 (2007)
Micalizio, R., Torasso, P.: Plan diagnosis and agent diagnosis in multi-agent systems. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 434–446. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74782-6_38
Micalizio, R., Torasso, P.: Team cooperation for plan recovery in multi-agent systems. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS (LNAI), vol. 4687, pp. 170–181. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74949-3_15
Micalizio, R., Torasso, P.: Monitoring the execution of a multi-agent plan: dealing with partial observability. In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI-08), pp. 408–412. IOS Press (2008)
Micalizio, R., Torasso, P.: Cooperative monitoring to diagnose multiagent plans. J. Artif. Intell. Res. 51, 1–70 (2014)
Micalizio, R., Torta, G.: Explaining interdependent action delays in multiagent plans execution. Auton. Agent. Multi-Agent Syst. 30(4), 601–639 (2016)
Raiman, O., de Kleer, J., Saraswat, V., Shirley, M.: Characterizing non-intermittent faults. In: AAAI 91, pp. 849–854 (1991)
Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32, 57–95 (1987)
Roos, N., ten Teije, A., Witteveen, C.: Reaching diagnostic agreement in multi-agent diagnosis. In: AAMAS 2004, pp. 1254–1255 (2004)
Roos, N., Witteveen, C.: Diagnosis of plan execution and the executing agent. In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 161–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11551263_14
Roos, N., Witteveen, C.: Diagnosis of plan structure violations. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS (LNAI), vol. 4687, pp. 157–169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74949-3_14
Roos, N., Witteveen, C.: Models and methods for plan diagnosis. J. Auton. Agents Multi-Agent Syst. 19, 30–52 (2008)
Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis Cambridge University (1989)
Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)
Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and multi-agent plans. In: AAMAS 2005, pp. 805–812 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Roos, N. (2018). Learning-Based Diagnosis and Repair. In: Verheij, B., Wiering, M. (eds) Artificial Intelligence. BNAIC 2017. Communications in Computer and Information Science, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-76892-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-76892-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76891-5
Online ISBN: 978-3-319-76892-2
eBook Packages: Computer ScienceComputer Science (R0)