Learning Planning Model for Semantic Process Compensation | SpringerLink
Skip to main content

Learning Planning Model for Semantic Process Compensation

  • Conference paper
  • First Online:
Service Research and Innovation (ASSRI 2015, ASSRI 2017)

Abstract

Recent advancements in business process conformance analysis have shown that the detection of non-conformance states can be learned with discovering inconsistencies between process models and their historical execution logs, despite their real behaviour. A key challenge in managing business processes is compensating non-conformance states. The concentration of this work is on the hardest aspect of the challenge, where the process might be structurally conformant, but it does not achieve an effect conform to what is required by design. In this work, we propose learning and planning model to address the compensation of semantically non-conformance states. Our work departs from the integration of two well-known AI paradigms, Machine Learning (ML) and Automated Planning (AP). Learning model is divided into two models to address two planning problems: learning predictive model that provides the planner with the ability to respond to violation points during the execution of the process model, and instance-based learning model that provides the planer with a compensation based on the nearest class when there are no compensations perfectly fit to the violation point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gou, Y., Ghose, A., Chang, C.-F., Dam, H.K., Miller, A.: Semantic monitoring and compensation in socio-technical processes. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 117–126. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12256-4_12

    Chapter  Google Scholar 

  2. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  3. Jimnez, S., De La Rosa, T., Fernindez, S., Fernindez, F., Borrajo, D.: A review of machine learning for automated planning. Knowl. Eng. Rev. 27(4), 433–467 (2012)

    Article  Google Scholar 

  4. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  5. Quinlan, J.R.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, vol. 92, pp. 343–348 (1992)

    Google Scholar 

  6. Weber, B.G., Mateas, M., Jhala, A.: Learning from demonstration for goal-driven autonomy. In: AAAI (2012)

    Google Scholar 

  7. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1), 245–271 (1997)

    Article  MathSciNet  Google Scholar 

  8. Kirkby, R., Frank, E., Reutemann, P.: Weka explorer user guide for version 3-5-8. University of Waikato (2007)

    Google Scholar 

  9. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2016)

    Google Scholar 

  10. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL-the planning domain definition language (1998)

    Google Scholar 

  11. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  12. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven process discovery - revealing conditional infrequent behavior from event logs. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_34

    Chapter  Google Scholar 

  13. Hsu, C.W., Wah, B.W.: The SGPlan planning system in IPC-6. In: Proceedings of IPC, September 2008

    Google Scholar 

  14. Di Pietro, I., Pagliarecci, F., Spalazzi, L.: Model checking semantically annotated services. IEEE Trans. Softw. Eng. 38(3), 592–608 (2012)

    Article  Google Scholar 

  15. Leesatapornwongsa, T., Hao, M., Joshi, P., Lukman, J.F., Gunawi, H.S.: SAMC: semantic-aware model checking for fast discovery of deep bugs in cloud systems. In: OSDI, pp. 399–414 (2014)

    Google Scholar 

  16. Cenamor, I., De La Rosa, T., Fernindez, F.: Learning predictive models to configure planning portfolios. In: Proceedings of the 4th Workshop on Planning and Learning, ICAPS-PAL, pp. 14–22, June 2013

    Google Scholar 

  17. Serina, I.: Kernel functions for case-based planning. Artif. Intell. 174(16), 1369–1406 (2010)

    Article  MathSciNet  Google Scholar 

  18. De La Rosa, T., Celorrio, S.J., Borrajo, D.: Learning relational decision trees for guiding heuristic planning. In: ICAPS, pp. 60–67 (2008)

    Google Scholar 

  19. Jimnez, S., Fernindez, F., Borrajo, D.: The PELA architecture: integrating planning and learning to improve execution. In: National Conference on Artificial Intelligence (2008)

    Google Scholar 

  20. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transactions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. The First 25 Years. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005). https://doi.org/10.1007/11423348_8

    Chapter  Google Scholar 

  21. Mazzara, M., Lucchi, R.: A framework for generic error handling in business processes. Electron. Not. Theoret. Comput. Sci. 105, 133–145 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Alelaimat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alelaimat, A., Santipuri, M., Gou, Y., Ghose, A. (2018). Learning Planning Model for Semantic Process Compensation. In: Beheshti, A., Hashmi, M., Dong, H., Zhang, W. (eds) Service Research and Innovation. ASSRI ASSRI 2015 2017. Lecture Notes in Business Information Processing, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-76587-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76587-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76586-0

  • Online ISBN: 978-3-319-76587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics