How to Support the Machine Learning Take-Off: Challenges and Hints for Achieving Intelligent UAVs | SpringerLink
Skip to main content

How to Support the Machine Learning Take-Off: Challenges and Hints for Achieving Intelligent UAVs

  • Conference paper
  • First Online:
Wireless and Satellite Systems (WiSATS 2017)

Abstract

Unmanned Aerial Vehicles (UAVs) are getting momentum. A growing number of industries and scientific institutions are focusing on these devices. UAVs can be used for a really wide spectrum of civilian and military applications. Usually these devices run on batteries, thus it is fundamental to efficiently exploit their hardware to reduce their energy footprint. A key aspect in facing the “energy issue” is the exploitation of properly designed solutions in order to target the energy- and hardware-constraints characterising these devices. However, there are not universal approaches easing the implementation of ad-hoc solutions for UAVs; it just depends on the class of problems to be faced. As matter of fact, targeting machine-learning solutions to UAVs could foster the development of a wide range of interesting application. This contribution is aimed at sketching the challenges deriving from the porting of machine-learning solutions, and the associated requirements, to highly distributed, constrained, inter-connected devices, highlighting the issues that could hinder their exploitation for UAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming in Erlang. Prentice Hall, Hertfordshire (1993)

    MATH  Google Scholar 

  2. Baraglia, R., Dazzi, P., Guidi, B., Ricci, L.: GoDel: Delaunay overlays in P2P networks via gossip. In: IEEE 12th International Conference on Peer-to-Peer Computing (P2P), pp. 1–12. IEEE (2012)

    Google Scholar 

  3. Baraglia, R., Dazzi, P., Mordacchini, M., Ricci, L.: A peer-to-peer recommender system for self-emerging user communities based on gossip overlays. J. Comput. Syst. Sci. 79(2), 291–308 (2013)

    Article  MathSciNet  Google Scholar 

  4. Baraglia, R., Dazzi, P., Mordacchini, M., Ricci, L., Alessi, L.: GROUP: a gossip based building community protocol. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN/ruSMART 2011. LNCS, vol. 6869, pp. 496–507. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22875-9_45

    Chapter  Google Scholar 

  5. Beck, M.T., Werner, M., Feld, S., Schimper, T.: Mobile edge computing: A taxonomy (2014)

    Google Scholar 

  6. Benenson, I., Torrens, P.M.: Geosimulation: Automata-based Modeling of Urban Phenomena. Wiley, Chichester (2004)

    Book  Google Scholar 

  7. Bernhardt, M.: Reactive Web Applications: Covers Play, Akka, and Reactive Streams. Manning Publications Co., Greenwich, CT (2016)

    Google Scholar 

  8. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier Y., Saporta G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

  9. Carlini, E., Coppola, M., Dazzi, P., Laforenza, D., Martinelli, S., Ricci, L.: Service and resource discovery supports over P2P overlays. In: International Conference on Ultra Modern Telecommunications & Workshops, ICUMT 2009, pp. 1–8. IEEE (2009)

    Google Scholar 

  10. Dazzi, P., Felber, P., Leonini, L., Mordacchini, M., Perego, R., Rajman, M., Rivière, É.: Peer-to-peer clustering of web-browsing users. In: Proceedings of LSDS-IR, pp. 71–78 (2009)

    Google Scholar 

  11. Ferber, J.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence. vol. 1. Addison-Wesley, Reading, MA (1999)

    Google Scholar 

  12. Gallington, R.W., Berman, H., Entzminger, J., Francis, M.S., Palmore, P., Stratakes, J.: Unmanned aerial vehicles. Future aeronautical and space systems (A 97–26201 06–31), Reston, VA, American Institute of Aeronautics and Astronautics, Inc., Progress. Astronautics and Aeronautics. 172, 251–295 (1997)

    Google Scholar 

  13. Gupta, M.: Akka Essentials. Packt Publishing Ltd, Birmingham (2012)

    Google Scholar 

  14. Helbing, D.: Agent-based modeling. In: Social self-organization, pp. 25–70. Springer (2012)

    Google Scholar 

  15. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)

    Google Scholar 

  16. Kaashoek, M.F., Karger, D.R.: Koorde: a simple degree-optimal distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–107. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45172-3_9

    Chapter  Google Scholar 

  17. Kestur, S., Davis, J.D., Williams, O.: BLAS comparison on FPGA, CPU and GPU. In: 2010 IEEE Computer Society Annual Symposium on VLSI, pp. 288–293, July 2010

    Google Scholar 

  18. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency (2016). arXiv preprint arXiv:1610.05492

  19. Ligtenberg, A., Bregt, A.K., Van Lammeren, R.: Multi-actor-based land use modelling: spatial planning using agents. Landscape Urban plann. 56(1), 21–33 (2001)

    Article  Google Scholar 

  20. Luan, T.H., Gao, L., Li, Z., Xiang, Y., Wei, G., Sun, L.: Fog computing: Focusing on Mobile Users at the Edge (2015). arXiv preprint arXiv:1502.01815

  21. Marzolla, M., Mordacchini, M., Orlando, S.: Resource discovery in a dynamic grid environment. In: Sixteenth International Workshop on Database and Expert Systems Applications, pp. 356–360. IEEE (2005)

    Google Scholar 

  22. McMahan, B., Moore, E., Ramage, D., Hampson, S., Aguera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017)

    Google Scholar 

  23. McMahan, B., Ramage, D.: Federated Learning: Collaborative Machine Learning without Centralized Training Data (2017)

    Google Scholar 

  24. Mordacchini, M., Dazzi, P., Tolomei, G., Baraglia, R., Silvestri, F., Orlando, S.: Challenges in designing an interest-based distributed aggregation of users in P2P systems. In: International Conference on Ultra Modern Telecommunications & Workshops, ICUMT 09, pp. 1–8. IEEE (2009)

    Google Scholar 

  25. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  MATH  Google Scholar 

  26. Pahl-Wostl, C.: Actor based analysis and modeling approaches. Integrated Assessment, 5(1) (2005)

    Google Scholar 

  27. Roestenburg, R., Bakker, R., Williams, R.: Akka in Action. Manning Publications Co., Greenwich, CT (2015)

    Google Scholar 

  28. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45518-3_18

    Chapter  Google Scholar 

  29. Sarma, S., Muck, T., Bathen, L.A.D., Dutt, N., Nicolau, A.: SmartBalance: a sensing-driven linux load balancer for energy efficiency of heterogeneous MPSoCs. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2015)

    Google Scholar 

  30. Scardapane, S., Wang, D., Panella, M.: A decentralized training algorithm for echo state networks in distributed big data applications. Neural Netw. 78, 65–74 (2016)

    Google Scholar 

  31. Schumacher, M.: Multi-agent Systems. Objective Coordination in Multi-agent System Engineering: Design And Implementation, pp. 9–32 (2001)

    Google Scholar 

  32. Smith, V., Chiang, C.-K., Sanjabi, M., Talwalkar, A.: Federated Multi-task Learning (2017). arXiv preprint arXiv:1705.10467

  33. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun. Rev. 31(4), 149–160 (2001)

    Article  Google Scholar 

  34. Trunfio, P., Talia, D., Papadakis, H., Fragopoulou, P., Mordacchini, M., Pennanen, M., Popov, K., Vlassov, V., Haridi, S.: Peer-to-peer resource discovery in grids: models and systems. Future Gener. Comput. Syst. 23(7), 864–878 (2007)

    Article  Google Scholar 

  35. Van der Hoek, W., Wooldridge, M.: Multi-agent systems. Found. Artif. Intell. 3, 887–928 (2008)

    Article  Google Scholar 

  36. Woithe, H.C., Kremer, U.: TrilobiteG: a programming architecture for autonomous underwater vehicles. In: Proceedings of the 16th ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems 2015 CD-ROM, LCTES 2015, pp. 14:1–14:10, New York. ACM (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizio Dazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dazzi, P., Cassarà, P. (2018). How to Support the Machine Learning Take-Off: Challenges and Hints for Achieving Intelligent UAVs. In: Pillai, P., Sithamparanathan, K., Giambene, G., Vázquez, M., Mitchell, P. (eds) Wireless and Satellite Systems. WiSATS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-76571-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76571-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76570-9

  • Online ISBN: 978-3-319-76571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics