Abstract
Unmanned Aerial Vehicles (UAVs) are getting momentum. A growing number of industries and scientific institutions are focusing on these devices. UAVs can be used for a really wide spectrum of civilian and military applications. Usually these devices run on batteries, thus it is fundamental to efficiently exploit their hardware to reduce their energy footprint. A key aspect in facing the “energy issue” is the exploitation of properly designed solutions in order to target the energy- and hardware-constraints characterising these devices. However, there are not universal approaches easing the implementation of ad-hoc solutions for UAVs; it just depends on the class of problems to be faced. As matter of fact, targeting machine-learning solutions to UAVs could foster the development of a wide range of interesting application. This contribution is aimed at sketching the challenges deriving from the porting of machine-learning solutions, and the associated requirements, to highly distributed, constrained, inter-connected devices, highlighting the issues that could hinder their exploitation for UAVs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming in Erlang. Prentice Hall, Hertfordshire (1993)
Baraglia, R., Dazzi, P., Guidi, B., Ricci, L.: GoDel: Delaunay overlays in P2P networks via gossip. In: IEEE 12th International Conference on Peer-to-Peer Computing (P2P), pp. 1–12. IEEE (2012)
Baraglia, R., Dazzi, P., Mordacchini, M., Ricci, L.: A peer-to-peer recommender system for self-emerging user communities based on gossip overlays. J. Comput. Syst. Sci. 79(2), 291–308 (2013)
Baraglia, R., Dazzi, P., Mordacchini, M., Ricci, L., Alessi, L.: GROUP: a gossip based building community protocol. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN/ruSMART 2011. LNCS, vol. 6869, pp. 496–507. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22875-9_45
Beck, M.T., Werner, M., Feld, S., Schimper, T.: Mobile edge computing: A taxonomy (2014)
Benenson, I., Torrens, P.M.: Geosimulation: Automata-based Modeling of Urban Phenomena. Wiley, Chichester (2004)
Bernhardt, M.: Reactive Web Applications: Covers Play, Akka, and Reactive Streams. Manning Publications Co., Greenwich, CT (2016)
Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier Y., Saporta G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16
Carlini, E., Coppola, M., Dazzi, P., Laforenza, D., Martinelli, S., Ricci, L.: Service and resource discovery supports over P2P overlays. In: International Conference on Ultra Modern Telecommunications & Workshops, ICUMT 2009, pp. 1–8. IEEE (2009)
Dazzi, P., Felber, P., Leonini, L., Mordacchini, M., Perego, R., Rajman, M., Rivière, É.: Peer-to-peer clustering of web-browsing users. In: Proceedings of LSDS-IR, pp. 71–78 (2009)
Ferber, J.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence. vol. 1. Addison-Wesley, Reading, MA (1999)
Gallington, R.W., Berman, H., Entzminger, J., Francis, M.S., Palmore, P., Stratakes, J.: Unmanned aerial vehicles. Future aeronautical and space systems (A 97–26201 06–31), Reston, VA, American Institute of Aeronautics and Astronautics, Inc., Progress. Astronautics and Aeronautics. 172, 251–295 (1997)
Gupta, M.: Akka Essentials. Packt Publishing Ltd, Birmingham (2012)
Helbing, D.: Agent-based modeling. In: Social self-organization, pp. 25–70. Springer (2012)
Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)
Kaashoek, M.F., Karger, D.R.: Koorde: a simple degree-optimal distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–107. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45172-3_9
Kestur, S., Davis, J.D., Williams, O.: BLAS comparison on FPGA, CPU and GPU. In: 2010 IEEE Computer Society Annual Symposium on VLSI, pp. 288–293, July 2010
Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency (2016). arXiv preprint arXiv:1610.05492
Ligtenberg, A., Bregt, A.K., Van Lammeren, R.: Multi-actor-based land use modelling: spatial planning using agents. Landscape Urban plann. 56(1), 21–33 (2001)
Luan, T.H., Gao, L., Li, Z., Xiang, Y., Wei, G., Sun, L.: Fog computing: Focusing on Mobile Users at the Edge (2015). arXiv preprint arXiv:1502.01815
Marzolla, M., Mordacchini, M., Orlando, S.: Resource discovery in a dynamic grid environment. In: Sixteenth International Workshop on Database and Expert Systems Applications, pp. 356–360. IEEE (2005)
McMahan, B., Moore, E., Ramage, D., Hampson, S., Aguera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017)
McMahan, B., Ramage, D.: Federated Learning: Collaborative Machine Learning without Centralized Training Data (2017)
Mordacchini, M., Dazzi, P., Tolomei, G., Baraglia, R., Silvestri, F., Orlando, S.: Challenges in designing an interest-based distributed aggregation of users in P2P systems. In: International Conference on Ultra Modern Telecommunications & Workshops, ICUMT 09, pp. 1–8. IEEE (2009)
Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)
Pahl-Wostl, C.: Actor based analysis and modeling approaches. Integrated Assessment, 5(1) (2005)
Roestenburg, R., Bakker, R., Williams, R.: Akka in Action. Manning Publications Co., Greenwich, CT (2015)
Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45518-3_18
Sarma, S., Muck, T., Bathen, L.A.D., Dutt, N., Nicolau, A.: SmartBalance: a sensing-driven linux load balancer for energy efficiency of heterogeneous MPSoCs. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2015)
Scardapane, S., Wang, D., Panella, M.: A decentralized training algorithm for echo state networks in distributed big data applications. Neural Netw. 78, 65–74 (2016)
Schumacher, M.: Multi-agent Systems. Objective Coordination in Multi-agent System Engineering: Design And Implementation, pp. 9–32 (2001)
Smith, V., Chiang, C.-K., Sanjabi, M., Talwalkar, A.: Federated Multi-task Learning (2017). arXiv preprint arXiv:1705.10467
Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun. Rev. 31(4), 149–160 (2001)
Trunfio, P., Talia, D., Papadakis, H., Fragopoulou, P., Mordacchini, M., Pennanen, M., Popov, K., Vlassov, V., Haridi, S.: Peer-to-peer resource discovery in grids: models and systems. Future Gener. Comput. Syst. 23(7), 864–878 (2007)
Van der Hoek, W., Wooldridge, M.: Multi-agent systems. Found. Artif. Intell. 3, 887–928 (2008)
Woithe, H.C., Kremer, U.: TrilobiteG: a programming architecture for autonomous underwater vehicles. In: Proceedings of the 16th ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems 2015 CD-ROM, LCTES 2015, pp. 14:1–14:10, New York. ACM (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Dazzi, P., Cassarà, P. (2018). How to Support the Machine Learning Take-Off: Challenges and Hints for Achieving Intelligent UAVs. In: Pillai, P., Sithamparanathan, K., Giambene, G., Vázquez, M., Mitchell, P. (eds) Wireless and Satellite Systems. WiSATS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-76571-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-76571-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76570-9
Online ISBN: 978-3-319-76571-6
eBook Packages: Computer ScienceComputer Science (R0)