Automatic Segmentation of LV and RV in Cardiac MRI | SpringerLink
Skip to main content

Automatic Segmentation of LV and RV in Cardiac MRI

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges (STACOM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10663))

Abstract

Automatic and accurate segmentation of Left Ventricle (LV) and Right Ventricle (RV) in cine-MRI is required to analyze cardiac function and viability. We present a fully convolutional neural network to efficiently segment LV and RV as well as myocardium. The network is trained end-to-end from scratch. Average dice scores from five-fold cross-validation on the ACDC training dataset were 0.94, 0.89, and 0.88 for LV, RV, and myocardium. Experimental results show the robustness of the proposed architecture.

Y. Jang and Y. Hongboth authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kang, D., et al.: Heart chambers and whole heart segmentation techniques. J. Electr. Imaging 21(1), 010901-1–010901-16 (2012)

    Article  Google Scholar 

  2. Petitjean, C., et al.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bai, W., et al.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)

    Article  Google Scholar 

  4. Bai, W., et al.: Multi-atlas segmentation with augmented features for cardiac MR images. Med. Image Anal. 19(1), 98–109 (2015)

    Article  Google Scholar 

  5. Avendi, M., et al.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  6. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 589–596. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_72

    Chapter  Google Scholar 

  7. Poudel, R.P.K., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 83–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_8

    Chapter  Google Scholar 

  8. Zhen, X., et al.: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med. Image Anal. 30, 120–129 (2016)

    Article  MathSciNet  Google Scholar 

  9. Litjens, G., et al.: A survey on deep learning in medical image analysis. arXiv:1702.05747 (2017)

  10. Mehta, R., et al.: M-Net: a convolutional neural network for deep brain structure segmentation. In: International Symposium on Biomedical Imaging, pp. 437–440 (2017)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (2017-0-00255, Autonomous digital companion framework and application).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonmi Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jang, Y., Hong, Y., Ha, S., Kim, S., Chang, HJ. (2018). Automatic Segmentation of LV and RV in Cardiac MRI. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. STACOM 2017. Lecture Notes in Computer Science(), vol 10663. Springer, Cham. https://doi.org/10.1007/978-3-319-75541-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75541-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75540-3

  • Online ISBN: 978-3-319-75541-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics