Abstract
A cascade of fully convolutional neural networks is proposed to segment multi-modal Magnetic Resonance (MR) images with brain tumor into background and three hierarchical regions: whole tumor, tumor core and enhancing tumor core. The cascade is designed to decompose the multi-class segmentation problem into a sequence of three binary segmentation problems according to the subregion hierarchy. The whole tumor is segmented in the first step and the bounding box of the result is used for the tumor core segmentation in the second step. The enhancing tumor core is then segmented based on the bounding box of the tumor core segmentation result. Our networks consist of multiple layers of anisotropic and dilated convolution filters, and they are combined with multi-view fusion to reduce false positives. Residual connections and multi-scale predictions are employed in these networks to boost the segmentation performance. Experiments with BraTS 2017 validation set show that the proposed method achieved average Dice scores of 0.7859, 0.9050, 0.8378 for enhancing tumor core, whole tumor and tumor core, respectively. The corresponding values for BraTS 2017 testing set were 0.7831, 0.8739, and 0.7748, respectively.
Similar content being viewed by others
References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., Brain, G.: TensorFlow: A system for large-scale machine learning. In: OSDI, pp. 265–284 (2016)
Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In: MICCAI, pp. 424–432 (2016)
Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nature Sci. Data 170117 (2017)
Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)
Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)
Chen, H., Dou, Q., Yu, L., Heng, P.A.: Voxresnet: Deep voxelwise residual networks for volumetric brain segmentation. NeuroImage (2017). https://doi.org/10.1016/j.neuroimage.2017.04.041. ISSN 1053-8119
Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Armbruster, M., Hofmann, F., Anastasi, M.D., Sommer, W.H., Ahmadi, S.A., Menze, B.H.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: MICCAI, pp. 415–423 (2016)
Fidon, L., Li, W., Garcia-Peraza-Herrera, L.C., Ekanayake, J., Kitchen, N., Ourselin, S., Vercauteren, T.: Scalable multimodal convolutional networks for brain tumour segmentation. In: MICCAI, pp. 285–293 (2017)
Fidon, L., Li, W., Garcia-Peraza-Herrera, L.C.: Generalised Wasserstein Dice score for imbalanced multi-class segmentation using holistic convolutional networks (2017). arXiv preprint arXiv:1707.00478
Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D., Wang, G., Eaton-Rosen, Z., Gray, R., Doel, T., Hu, Y., Whyntie, T., Nachev, P., Barratt, D.C., Ourselin, S., Cardoso, M.J., Vercauteren, T.: NiftyNet: A deep-learning platform for medical imaging (2017). arXiv preprint arXiv:1709.03485
Grosgeorge, D., Petitjean, C., Dacher, J.N., Ruan, S.: Graph cut segmentation with a statistical shape model in cardiac MRI. Comput. Vis. Image Underst. 117(9), 1027–1035 (2013)
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2016)
Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: Hetero-modal image segmentation. In: MICCAI, pp. 469–477 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV, pp. 1026–1034 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
Kaus, M.R., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated segmentation of MR images of brain tumors. Radiology 218(2), 586–591 (2001)
Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: ICLR (2015)
Lee, C.-H., Schmidt, M., Murtha, A., Bistritz, A., Sander, J., Greiner, R.: Segmenting brain tumors with conditional random fields and support vector machines. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 469–478. Springer, Heidelberg (2005). https://doi.org/10.1007/11569541_47
Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_28
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, Ç., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). TMI 34(10), 1993–2024 (2015)
Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_19
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: IC3DV, pp. 565–571 (2016)
Mortazi, A., Karim, R., Rhode, K., Burt, J., Bagci, U.: CardiacNET: Segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN. In: MICCAI, pp. 377–385 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234–241 (2015)
Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., Arbel, T., Carneiro, G., Syeda-Mahmood, T., Tavares, J.M.R.S., Moradi, M., Bradley, A., Greenspan, H., Papa, J.P., Madabhushi, A., Nascimento, J.C., Cardoso, J.S., Belagiannis, V., Lu, Z. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28
Wang, G., Zhang, S., Xie, H., Metaxas, D.N., Gu, L.: A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning. Med. Image Anal. 19(1), 176–186 (2015)
Wang, G., Zuluaga, M.A., Li, W., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., Klusmann, M., David, A.L., Deprest, J., Ourselin, S., Vercauteren, T.: DeepIGeoS: A deep interactive geodesic framework for medical image segmentation (2017). arXiv preprint arXiv:1707.00652
Wang, J., Liu, T.: A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014)
Xie, S., Diego, S., Jolla, L., Tu, Z., Diego, S., Jolla, L.: Holistically-nested edge detection. In: ICCV, pp. 1395–1403 (2015)
Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46
Acknowledgements
We would like to thank the NiftyNet team. This work was supported through an Innovative Engineering for Health award by the Wellcome Trust [WT101957], Engineering and Physical Sciences Research Council (EPSRC) [NS/A000027/1], the National Institute for Health Research University College London Hospitals Biomedical Research Centre (NIHR BRC UCLH/UCL High Impact Initiative), a UCL Overseas Research Scholarship, a UCL Graduate Research Scholarship, hardware donated by NVIDIA, and the Health Innovation Challenge Fund [HICF-T4-275, WT 97914], a parallel funding partnership between the Department of Health and Wellcome Trust.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Wang, G., Li, W., Ourselin, S., Vercauteren, T. (2018). Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-75238-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75237-2
Online ISBN: 978-3-319-75238-9
eBook Packages: Computer ScienceComputer Science (R0)