Convolutional Neural Networks Implementations for Computer Vision | SpringerLink
Skip to main content

Convolutional Neural Networks Implementations for Computer Vision

  • Conference paper
  • First Online:
Biomedical Engineering and Neuroscience (BCI 2018)

Abstract

The paper covers the current state of the art regarding the use of machine learning mechanisms, and in particular the deep convolutional neural networks used in the field of computer vision. In the article there has been presented the current definition of deep learning and specific dependencies between related fields such as machine learning and artificial intelligence. The practical part of the work consists of three components: the features of the structure of the convolutional neural network, the distinction of its key elements, the description of their actions, the compilation of information about available learning sets used in network testing and verification processes, and the review of the implementation of convolutional neural networks, which had a significant impact on development of discipline. To illustrate the great potential of the presented tools for solving computer vision tasks, the study highlites examples of their applications. The possibility of using convolutional neural networks for identification of technical objects in digital images is indicated.

Paweł Michalski, PhD. Eng., Assistant Professor; Bogdan Ruszczak, PhD. Eng., Assistant Professor; Michał Tomaszewski, PhD. Eng., Associate Professor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 25739
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batra, S., Sachdeva, S.: Suitability of data models for electronic health records database. In: Srinivasa, S., Mehta, S. (eds.) BDA 2014. LNCS, vol. 8883, pp. 14–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13820-6_2

    Google Scholar 

  2. Bagloee, S.A., Tavana, M., Asadi, M., et al.: Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. J. Mod. Transport. 24(4), 284–303 (2016). https://doi.org/10.1007/s40534-016-0117-3

    Article  Google Scholar 

  3. Pal, S.K., Meher, S.K., Skowron, A.: Data science, big data and granular mining. Pattern Recogn. Lett. 67(2), 109–112 (2015). https://doi.org/10.1016/j.patrec.2015.08.001

  4. Häne, C., Sattler, T., Pollefeys, M.: Obstacle detection for self-driving cars using only monocular cameras and wheel odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. Hamburg (2015). https://doi.org/10.1109/IROS.2015.7354095

  5. Salman, Y.D., Ku-Mahamud, K.R., Kamioka, E.: Distance measurement for self-driving cars using stereo camera. In: Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017, Kuala Lumpur (2017)

    Google Scholar 

  6. Hohm, A., Lotz, F., Fochler, O., Lueke, S., Winner, H.: Automated Driving in Real Traffic: from Current Technical Approaches towards Architectural Perspectives. SAE Technical Paper (2014)

    Google Scholar 

  7. Karami, E., Prasad, S., Shehata, M.: Image matching using SIFT, SURF, BRIEF and ORB: performance comparison for distorted images. In: Newfoundland Electrical and Computer Engineering Conference, IEEE, Newfoundland and Labrador Section At St. John’s, NL (2015). https://doi.org/10.13140/RG.2.1.1558.3762

  8. Amodei, D., Olah, C., Steinhardt, J., Christiano,,P., Schulman, J., Man, D.: Concrete Problems in AI Safety (2016). arxiv.org/abs/1606.06565

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F. (eds.) A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, Hoboken (2001)

    Google Scholar 

  12. Hinton, G.E.: To recognize shapes, first learn to generate images. Prog. Brain Res. 165, 535–547 (2007)

    Article  Google Scholar 

  13. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers, Boston (2009)

    MATH  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems (2012)

    Google Scholar 

  15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Networks (2014). arxiv.org/abs/1406.2661

  16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision (2015). arxiv.org/abs/1502.01852

  17. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  18. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  19. ImageNet Project. http://image-net.org

  20. Cao, J., et al.: A parallel Adaboost-Backpropagation neural network for massive image dataset classification, Sci. Rep. 6(38201) (2016). https://doi.org/10.1038/srep38201

  21. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH (2014). https://doi.org/10.1109/CVPR.2014.222

  22. Marszalek, M., Schmid, C., Harzallah, H., Weijer, J.: Learning object representations for visual object class recognition. In: Visual Recognition Challange workshop, ICCV (2007)

    Google Scholar 

  23. Yan, S., Dong, J., Chen, Q., Song, Z., Pan, Y., Xia, W., Huang, Z., Hua, Y., Shen, S.: Generalized hierarchical matching for sub-category aware object classification. In: Visual Recognition Challenge workshop, ECCV (2012)

    Google Scholar 

  24. SpaceNet. http://explore.digitalglobe.com/spacenet

  25. Papert, S., Minsky, M.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  26. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980). https://doi.org/10.1007/BF00344251

    Article  MathSciNet  MATH  Google Scholar 

  27. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-scale Image Recognition (2014). arxiv.org/abs/1409.1556

  30. Szegedy, C., et al.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning (2016). arxiv.org/abs/1602.07261

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas (2016). https://doi.org/10.1109/CVPR.2016.90

  32. Yong-Deok, K., Eunhyeok, P., Sungjoo, Y., Taelim, C., Lu, Y., Dongjun, S.: Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications (2016). arxiv.org/abs/1511.06530

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Tomaszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michalski, P., Ruszczak, B., Tomaszewski, M. (2018). Convolutional Neural Networks Implementations for Computer Vision. In: Hunek, W., Paszkiel, S. (eds) Biomedical Engineering and Neuroscience. BCI 2018. Advances in Intelligent Systems and Computing, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-319-75025-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75025-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75024-8

  • Online ISBN: 978-3-319-75025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics