Abstract
We do an extensive check of what typical scenarios of swarm robotics have been investigated and what methods have been published.This is an extensive guide through the literature on swarm robotics. It is structured by the investigated scenarios and starts from tasks of low complexity, such as aggregation and dispersion. A discussion of pattern formation, object clustering, sorting, and self-assembly follows. Collective construction is already a rather complex scenario that combines several subtasks, such as collective decision-making and collective transport. We take the example of collective manipulation to discuss the interesting phenomenon of super-linear performance increase. Not only the swarm performance increases with increasing swarm size but even the individual robot’s efficiency. Flocking, collective motion, foraging, and shepherding are discussed as typical examples of swarm behaviors. Bio-hybrid systems as combinations of robots and living organisms are quickly introduced. We conclude with a discussion of what could arguably be called “swarm robotics 2.0”—a few recent very promising approaches, such as error detection, security, swarms as interfaces, and swarm robotics as field robotics.
All this time we’ve been gazing upwards in anticipation of an alien species arriving from space, when intelligent life-forms have been with us all along, inhabiting part of the planet that we’ve never seriously attempted to explore.
—Frank Schätzing, The Swarm
From what you say it follows that robots should be constructed quite differently from the way we’ve been doing it in order to be really universal: you’d have to start with tiny elementary building blocks, primary units, pseudo-cells that can replace each other, if necessary.
—Stanisław Lem, The Invincible
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Allwright, M., Bhalla, N., & Dorigo, M. (2017). Structure and markings as stimuli for autonomous construction. In 2017 18th International Conference on Advanced Robotics (ICAR) (pp. 296–302). New York: IEEE.
Allwright, M., Bhalla, N., El-faham, H., Antoun, A., Pinciroli, C., & Dorigo, M. (2014). SRoCS: Leveraging stigmergy on a multi-robot construction platform for unknown environments. In International Conference on Swarm Intelligence (pp. 158–169). Cham: Springer.
Anderson, C., Boomsma, J. J., & Bartholdi, J. J. (2002). Task partitioning in insect societies: Bucket brigades. Insectes Sociaux, 49, 171–180.
Anderson, C., Theraulaz, G., & Deneubourg, J.-L. (2002). Self-assemblages in insect societies. Insectes Sociaux, 49(2), 99–110.
Arbuckle, D. J. (2007). Self-assembly and Self-repair by Robot Swarms, University of Southern California.
Arbuckle, D. J., & Requicha, A. A. G. (2010). Self-assembly and self-repair of arbitrary shapes by a swarm of reactive robots: Algorithms and simulations. Autonomous Robots, 28(2), 197–211. ISSN 1573-7527. https://doi.org/10.1007/s10514-009-9162-7
Arkin, R. C., & Egerstedt, M. (2015). Temporal heterogeneity and the value of slowness in robotic systems. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1000–1005). New York: IEEE.
Arvin, F., Turgut, A. E., Bazyari, F., Arikan, K. B., Bellotto, N., & Yue, S. (2014). Cue-based aggregation with a mobile robot swarm: A novel fuzzy-based method. Adaptive Behavior, 22(3), 189–206.
Arvin, F., Turgut, A. E., & Yue, S. (2012). Fuzzy-based aggregation with a mobile robot swarm. In Swarm intelligence (ANTS’12). Lecture notes in computer science (Vol. 7461, pp. 346–347). Berlin: Springer. ISBN 978-3-642-32649-3. https://doi.org/10.1007/978-3-642-32650-9\_39
Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., et al. (2014). The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems, 34(4), 46–64.
Balch, T. (2000). Hierarchic social entropy: An information theoretic measure of robot group diversity. Autonomous Robots, 8(3), 209–238. ISSN 0929-5593.
Ball, P. (2015). Forging patterns and making waves from biology to geology: A commentary on Turing (1952) ‘the chemical basis of morphogenesis’. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370(1666), 20140218. ISSN 0962-8436. https://doi.org/10.1098/rstb.2014.0218
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al. (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1232–1237.
Bayindir, L. (2015). A review of swarm robotics tasks. Neurocomputing, 172(C), 292–321. http://dx.doi.org/10.1016/j.neucom.2015.05.116
Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Şahin & W. M. Spears (Eds.), Swarm Robotics - SAB 2004 International Workshop, Santa Monica, CA, July 2005. Lecture notes in computer science (Vol. 3342, pp. 1–9). Berlin: Springer. http://dx.doi.org/10.1007/978-3-540-30552-1_1
Berman, S., Lindsey, Q., Sakar, M. S., Kumar, V., & Pratt, S. C. (2011). Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proceedings of the IEEE, 99(9), 1470–1481. ISSN 0018-9219. https://doi.org/10.1109/JPROC.2011.2111450
Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York, NY: Oxford University Press.
Bonnet, F., Cazenille, L., Gribovskiy, A., Halloy, J., & Mondada, F. (2017). Multi-robot control and tracking framework for bio-hybrid systems with closed-loop interaction. In 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017 (pp. 4449–4456). https://doi.org/10.1109/ICRA.2017.7989515
Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41. ISSN 1935-3812. http://dx.doi.org/10.1007/s11721-012-0075-2
Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, 28(1), 101–125. ISSN 1387-2532. http://dx.doi.org/10.1007/s10458-012-9212-y
Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., & Simpson, S. J. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406. https://doi.org/10.1126/science.1125142
Caprari, G., Colot, A., Siegwart, R., Halloy, J., & Deneubourg, J.-L. (2005). Animal and robot mixed societies: Building cooperation between microrobots and cockroaches. IEEE Robotics & Automation Magazine, 12(2), 58–65. https://doi.org/10.1109/MRA.2005.1458325
Carlsson, H., & Van Damme, E. (1993). Global games and equilibrium selection. Econometrica: Journal of the Econometric Society, 6(5), 989–1018.
Carneiro, J., Leon, K., Caramalho, Í., Van Den Dool, C., Gardner, R., Oliveira, V., et al. (2007). When three is not a crowd: A crossregulation model of the dynamics and repertoire selection of regulatory cd4+ t cells. Immunological Reviews, 216(1), 48–68.
Chazelle, B. (2015). An algorithmic approach to collective behavior. Journal of Statistical Physics, 158(3), 514–548.
Chen, J., Gauci, M., Price, M. J., & Groß, R. (2012). Segregation in swarms of e-puck robots based on the Brazil nut effect. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), Richland, SC (pp. 163–170). IFAAMAS.
Christensen, A. L., O’Grady, R., & Dorigo, M. (2009). From fireflies to fault-tolerant swarms of robots. IEEE Transactions on Evolutionary Computation, 13(4), 754–766. ISSN 1089-778X. https://doi.org/10.1109/TEVC.2009.2017516
Correll, N., Schwager, M., & Rus, D. (2008). Social control of herd animals by integration of artificially controlled congeners. In Proceedings of the 10th International Conference on Simulation of Adaptive Behavior: From Animals to Animats. Lecture notes in computer science (Vol. 5040, pp. 437–446). Berlin: Springer.
Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1–11. https://doi.org/10.1006/jtbi.2002.3065
da Silva Guerra, R., Aonuma, H., Hosoda, K., & Asada, M. (2010). Behavior change of crickets in a robot-mixed society. Journal of Robotics and Mechatronics, 22, 526–531.
De Nardi, R., & Holland, O. E. (2007). Ultraswarm: A further step towards a flock of miniature helicopters. In E. Şahin, W. M. Spears, & A. F. T. Winfield (Eds.), Swarm Robotics - Second SAB 2006 International Workshop. Lecture notes in computer science (Vol. 4433, pp. 116–128). Berlin: Springer.
Ding, H., & Hamann, H. (2014). Sorting in swarm robots using communication-based cluster size estimation. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. M. de Oca, C. Solnon, & T. Stützle (Eds.), Ninth International Conference on Swarm Intelligence (ANTS 2014). Lecture notes in computer science (Vol. 8667, pp. 262–269). Berlin: Springer.
Divband Soorati, M., & Hamann, H. (2016). Robot self-assembly as adaptive growth process: Collective selection of seed position and self-organizing tree-structures. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016) (pp. 5745–5750). New York: IEEE. http://dx.doi.org/10.1109/IROS.2016.7759845
Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.
Dorigo, M., Tuci, E., Trianni, V., Groß, R., Nouyan, S., Ampatzis, C., et al. (2006). SWARM-BOT: Design and implementation of colonies of self-assembling robots. In G. Y. Yen & D. B. Fogel (Eds.), Computational intelligence: Principles and practice (pp. 103–135). Los Alamitos, CA: IEEE Press.
Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., et al. (2016). Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS One, 11(3), 1–25. https://doi.org/10.1371/journal.pone.0151834.
Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., et al. (2016). Unleashing the potential of evolutionary swarm robotics in the real world. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, GECCO ’16 Companion, New York, NY, USA (pp. 159–160). New York: ACM. ISBN 978-1-4503-4323-7. http://doi.acm.org/10.1145/2908961.2930951
Ducatelle, F., Di Caro, G. A., & Gambardella, L. M. (2010). Cooperative self-organization in a heterogeneous swarm robotic system. In Proceedings of the 12th Conference on Genetic and Evolutionary Computation (GECCO) (pp. 87–94). New York: ACM.
Farrow, N., Klingner, J., Reishus, D., & Correll, N. (2014). Miniature six-channel range and bearing system: Algorithm, analysis and experimental validation. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6180–6185). New York: IEEE.
Ferrante, E., Turgut, A. E., Duéñez-Guzmàn, E., Dorigo, M., & Wenseleers, T. (2015). Evolution of self-organized task specialization in robot swarms. PLoS Computational Biology, 11(8), e1004273. https://doi.org/10.1371/journal.pcbi.1004273.
Ferrer, E. C. (2016). The blockchain: A new framework for robotic swarm systems. Preprint arXiv:1608.00695. https://arxiv.org/pdf/1608.00695
Flora robotica. (2017). Project website. http://www.florarobotica.eu
Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intelligence: Theories, methods, and technologies. Cambridge, MA: MIT Press.
Ford, L. R. Jr, & Fulkerson, D. R. (2015). Flows in networks. Princeton, NJ: Princeton University Press.
Franks, N. R., & Sendova-Franks, A. B. (1992). Brood sorting by ants: Distributing the workload over the work-surface. Behavioral Ecology and Sociobiology, 30(2), 109–123.
Franks, N. R., Wilby, A., Silverman, B. W., & Tofts, C. (1992). Self-organizing nest construction in ants: Sophisticated building by blind bulldozing. Animal Behaviour, 44, 357–375.
Gauci, M., Nagpal, R., & Rubenstein, M. (2016). Programmable self-disassembly for shape formation in large-scale robot collectives. In 13th International Symposium on Distributed Autonomous Robotic Systems (DARS 16).
Gauci, M., Ortiz, M. E., Rubenstein, M., & Nagpal, R. (2017). Error cascades in collective behavior: A case study of the gradient algorithm on 1000 physical agents. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems (pp. 1404–1412). International Foundation for Autonomous Agents and Multiagent Systems.
Gerling, V., & von Mammen, S. (2016). Robotics for self-organised construction. In 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W), September 2016 (pp. 162–167). https://doi.org/10.1109/FAS-W.2016.45
Gierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. Biological Cybernetics, 12(1), 30–39. http://dx.doi.org/10.1007/BF00289234
Goldstein, I., & Pauzner, A. (2005). Demand–deposit contracts and the probability of bank runs. The Journal of Finance, 60(3), 1293–1327.
Gomes, J., Mariano, P., & Christensen, A. L. (2015). Cooperative coevolution of partially heterogeneous multiagent systems. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems (pp. 297–305). International Foundation for Autonomous Agents and Multiagent Systems.
Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380, 121–124. https://doi.org/10.1038/380121a0
Gribovskiy, A., Halloy, J., Deneubourg, J.-L., Bleuler, H., & Mondada, F. (2010). Towards mixed societies of chickens and robots. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4722–4728). New York: IEEE.
Groß, R., & Dorigo, M. (2008). Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adaptive Behavior, 16(5), 285–305.
Groß, R., Magnenat, S., & Mondada, F. (2009). Segregation in swarms of mobile robots based on the Brazil nut effect. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009) (pp. 4349–4356). New York: IEEE.
Habibi, G., Xie, W., Jellins, M., & McLurkin, J. (2016). Distributed path planning for collective transport using homogeneous multi-robot systems. In N.-Y. Chong & Y.-J. Cho (Eds.), Distributed Autonomous Robotic Systems: The 12th International Symposium (pp. 151–164). Tokyo: Springer. ISBN 978-4-431-55879-8. https://doi.org/10.1007/978-4-431-55879-8_11
Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., et al. (2007). Social integration of robots into groups of cockroaches to control self-organized choices. Science, 318(5853), 1155–1158. http://dx.doi.org/10.1126/science.1144259
Hamann, H., Divband Soorati, M., Heinrich, M. K., Hofstadler, D. N., Kuksin, I., Veenstra, F., et al. (2017). Flora robotica - An architectural system combining living natural plants and distributed robots. Preprint arXiv:1709.04291.
Hamann, H., Meyer, B., Schmickl, T., & Crailsheim, K. (2010). A model of symmetry breaking in collective decision-making. In S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, & J.-B. Mouret (Eds.), From animals to animats 11. Lecture notes in artificial intelligence (Vol. 6226, pp. 639–648), Berlin: Springer. http://dx.doi.org/10.1007/978-3-642-15193-4_60
Hamann, H., Schmickl, T., & Crailsheim, K. (2012). A hormone-based controller for evaluation-minimal evolution in decentrally controlled systems. Artificial Life, 18(2), 165–198. http://dx.doi.org/10.1162/artl_a_00058
Hamann, H., Schmickl, T., & Crailsheim, K. (2012). Self-organized pattern formation in a swarm system as a transient phenomenon of non-linear dynamics. Mathematical and Computer Modelling of Dynamical Systems, 18(1), 39–50. http://www.tandfonline.com/doi/abs/10.1080/13873954.2011.601418
Hamann, H., Schmickl, T., Wörn, H., & Crailsheim, K. (2012). Analysis of emergent symmetry breaking in collective decision making. Neural Computing & Applications, 21(2), 207–218. http://dx.doi.org/10.1007/s00521-010-0368-6
Hamann, H., Stradner, J., Schmickl, T., & Crailsheim, K. (2010). A hormone-based controller for evolutionary multi-modular robotics: From single modules to gait learning. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’10) (pp. 244–251).
Hamann, H., Szymanski, M., & Wörn, H. (2007). Orientation in a trail network by exploiting its geometry for swarm robotics. In Y. Shi & M. Dorigo (Eds.), IEEE Swarm Intelligence Symposium, Honolulu, USA, April 1–5, Los Alamitos, CA, April 2007 (pp. 310–315). New York: IEEE Press.
Hamann, H., Wahby, M., Schmickl, T., Zahadat, P., Hofstadler, D., Støy, K., et al. (2015). Flora robotica – Mixed societies of symbiotic robot-plant bio-hybrids. In Proceedings of IEEE Symposium on Computational Intelligence (IEEE SSCI 2015) (pp. 1102–1109). New York: IEEE. http://dx.doi.org/10.1109/SSCI.2015.158
Hamann, H., & Wörn, H. (2007). An analytical and spatial model of foraging in a swarm of robots. In E. Şahin, W. Spears, & A. F. T. Winfield (Eds.), Swarm Robotics - Second SAB 2006 International Workshop. Lecture notes in computer science (Vol. 4433, pp. 43–55). Berlin/Heidelberg: Springer.
Hansell, M. H. (1984). Animal architecture and building behaviour. London: Longman.
Harada, K., Corradi, P., Popesku, S., & Liedke, J. (2010). Heterogeneous multi-robot systems. In P. Levi & S. Kernbach (Eds.), Symbiotic multi-robot organisms: Reliability, adaptability, evolution. Cognitive systems monographs (Vol. 7, pp. 79–163). Berlin: Springer.
Harriott, C. E., Seiffert, A. E., Hayes, S. T., & Adams, J. A. (2014). Biologically-inspired human-swarm interaction metrics. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 1471–1475. https://doi.org/10.1177/1541931214581307
Heinrich, M. K., Wahby, M., Soorati, M. D., Hofstadler, D. N., Zahadat, P., Ayres, P., et al. (2016). Self-organized construction with continuous building material: Higher flexibility based on braided structures. In Proceedings of the 1st International Workshop on Self-Organising Construction (SOCO) (pp. 154–159). New York: IEEE. https://doi.org/10.1109/FAS-W.2016.43
Helbing, D., Keltsch, J., & Molnár, P. (1997). Modelling the evolution of human trail systems. Nature, 388, 47–50.
Helbing, D., Schweitzer, F., Keltsch, J., & Molnár, P. (1997). Active walker model for the formation of human and animal trail systems. Physical Review E, 56(3), 2527–2539.
Hereford, J. M. (2011). Analysis of BEECLUST swarm algorithm. In Proceedings of the IEEE Symposium on Swarm Intelligence (SIS 2011) (pp. 192–198). New York: IEEE.
Hoddell, S., Melhuish, C., & Holland, O. (1998). Collective sorting and segregation in robots with minimal sensing. In 5th International Conference on the Simulation of Adaptive Behaviour (SAB). Cambridge, MA: MIT Press.
Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11, 149–171. ISSN 0929-5593. https://doi.org/10.1023/A:1011227210047.
Jackson, D. E., Holcombe, M., & Ratnieks, F. L. W. (2004). Trail geometry gives polarity to ant foraging networks. Nature, 432, 907–909.
Jones, J. (2010). The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. International Journal of Unconventional Computing, 6(2), 125–144.
Jones, J. (2010). Characteristics of pattern formation and evolution in approximations of physarum transport networks. Artificial Life, 16(2), 127–153.
Kalthoff, K. (1978). Pattern formation in early insect embryogenesis - data calling for modification of a recent model. Journal of Cell Science, 29(1), 1–15.
Kanakia, A. P. (2015). Response Threshold Based Task Allocation in Multi-Agent Systems Performing Concurrent Benefit Tasks with Limited Information. PhD thesis, University of Colorado Boulder.
Karsai, I., & Schmickl, T. (2011). Regulation of task partitioning by a “common stomach”: A model of nest construction in social wasps. Behavioral Ecology, 22, 819–830. https://doi.org/10.1093/beheco/arr060
Kengyel, D., Hamann, H., Zahadat, P., Radspieler, G., Wotawa, F., & Schmickl, T. (2015). Potential of heterogeneity in collective behaviors: A case study on heterogeneous swarms. In Q. Chen, P. Torroni, S. Villata, J. Hsu, & A. Omicini (Eds.), PRIMA 2015: Principles and practice of multi-agent systems. Lecture notes in computer science (Vol. 9387, pp. 201–217). Berlin: Springer.
Kernbach, S., Thenius, R., Kernbach, O., & Schmickl, T. (2009). Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm. Adaptive Behavior, 17, 237–259.
Kessler, M. A., & Werner, B. T. (2003). Self-organization of sorted patterned ground. Science, 299, 380–383.
Khaluf, Y., Birattari, M., & Hamann, H. (2014). A swarm robotics approach to task allocation under soft deadlines and negligible switching costs. In A. P. del Pobil, E. Chinellato, E. Martinez-Martin, J. Hallam, E. Cervera, & A. Morales (Eds.), Simulation of adaptive behavior (SAB 2014). Lecture notes in computer science (Vol. 8575, pp. 270–279). Berlin: Springer.
Kim, L. H., & Follmer, S. (2017). UbiSwarm: Ubiquitous robotic interfaces and investigation of abstract motion as a display. The Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3), 66:1–66:20. ISSN 2474-9567. http://doi.acm.org/10.1145/3130931
Kolling, A., Walker, P., Chakraborty, N., Sycara, K., & Lewis, M. (2016). Human interaction with robot swarms: A survey. IEEE Transactions on Human-Machine Systems, 46(1), 9–26. ISSN 2168-2291. https://doi.org/10.1109/THMS.2015.2480801
Kube, C. R., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30, 85–101.
Lee, R. E. Jr. (1980). Aggregation of lady beetles on the shores of lakes (coleoptera: Coccinellidae). American Midland Naturalist, 104(2), 295–304.
Lemaire, T., Alami, R., & Lacroix, S. (2004). A distributed tasks allocation scheme in multi-UAV context. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04) (Vol. 4, pp. 3622–3627). New York: IEEE Press. https://doi.org/10.1109/ROBOT.2004.1308816
Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots, 13, 127–141.
Levi, P., & Kernbach, S. (Eds.). (2010). Symbiotic multi-robot organisms: Reliability, adaptability, evolution. Berlin: Springer.
Ludwig, L., & Gini, M. (2006). Robotic swarm dispersion using wireless intensity signals. In Distributed autonomous robotic systems 7 (pp. 135–144). Berlin: Springer.
Madhavan, R., Fregene, K., & Parker, L. E. (2004). Terrain aided distributed heterogeneous multirobot localization and mapping. Autonomous Robots, 17, 23–39.
Mariano, P., Salem, Z., Mills, R., Zahadat, P., Correia, L., & Schmickl, T. (2017). Design choices for adapting bio-hybrid systems with evolutionary computation. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, New York, NY, USA (pp. 211–212). New York: ACM. ISBN 978-1-4503-4939-0. http://doi.acm.org/10.1145/3067695.3076044
Mathews, N., Christensen, A. L., Ferrante, E., O’Grady, R., & Dorigo, M. (2010). Establishing spatially targeted communication in a heterogeneous robot swarm. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (pp. 939–946). International Foundation for Autonomous Agents and Multiagent Systems.
Mayet, R., Roberz, J., Schmickl, T., & Crailsheim, K. (2010). Antbots: A feasible visual emulation of pheromone trails for swarm robots. In M. Dorigo, M. Birattari, G. A. Di Caro, R. Doursat, A. P. Engelbrecht, D. Floreano, L. M. Gambardella, R. Groß, E. Şahin, H. Sayama, & T. Stützle (Eds.), Swarm Intelligence: 7th International Conference, ANTS 2010. Lecture notes in computer science (Vol. 6234, pp. 84–94). Berlin/Heidelberg/New York: Springer. ISBN 978-3-642-15460-7. https://doi.org/10.1007/978-3-642-15461-4
McEvoy, M. A., & Correll, N. (2015). Materials that couple sensing, actuation, computation, and communication. Science, 347(6228), 1261689. ISSN 0036-8075. https://doi.org/10.1126/science.1261689.
McLurkin, J., Lynch, A. J., Rixner, S., Barr, T. W., Chou, A., Foster, K., et al. (2013). A low-cost multi-robot system for research, teaching, and outreach. In Distributed autonomous robotic systems (pp. 597–609). Berlin: Springer.
McLurkin, J., & Smith, J. (2004). Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In Distributed Autonomous Robotic Systems Conference.
Meinhardt, H. (2003). The algorithmic beauty of sea shells. Berlin: Springer.
Meinhardt, H., & Klingler, M. (1987). A model for pattern formation on the shells of molluscs. Journal of Theoretical Biology, 126, 63–69.
Melhuish, C., Wilson, M., & Sendova-Franks, A. (2001). Patch sorting: Multi-object clustering using minimalist robots. In J. Kelemen & P. Sosík (Eds.), Advances in Artificial Life: 6th European Conference, ECAL 2001 Prague, Czech Republic, September 10–14, 2001 Proceedings (pp. 543–552). Berlin/Heidelberg: Springer. ISBN 978-3-540-44811-2. https://doi.org/10.1007/3-540-44811-X_62
Mellinger, D., Shomin, M., Michael, N., & Kumar, V. (2013). Cooperative grasping and transport using multiple quadrotors. In Distributed autonomous robotic systems (pp. 545–558). Berlin: Springer.
Merkle, D., Middendorf, M., & Scheidler, A. (2007). Swarm controlled emergence-designing an anti-clustering ant system. In IEEE Swarm Intelligence Symposium (pp. 242–249). New York: IEEE.
Meyer, B., Beekman, M., & Dussutour, A. (2008). Noise-induced adaptive decision-making in ant-foraging. In Simulation of adaptive behavior (SAB). Lecture notes in computer science (Vol. 5040, pp. 415–425). Berlin: Springer.
Möbius, M. E., Lauderdale, B. E., Nagel, S. R., & Jaeger, H. M. (2001). Brazil-nut effect: Size separation of granular particles. Nature, 414(6861), 270.
Moeslinger, C., Schmickl, T., & Crailsheim, K. (2010). Emergent flocking with low-end swarm robots. In M. Dorigo, M. Birattari, G. Di Caro, R. Doursat, A. Engelbrecht, D. Floreano, L. Gambardella, R. Groß, E. Sahin, H. Sayama, & T. Stützle (Eds.), Swarm intelligence. Lecture notes in computer science (Vol. 6234, pp. 424–431). Berlin/Heidelberg: Springer.
Moeslinger, C., Schmickl, T., & Crailsheim, K. (2011). A minimalist flocking algorithm for swarm robots. In Advances in Artificial Life: Darwin Meets von Neumann (ECAL’09). Lecture notes in computer science (Vol. 5778, pp. 357–382). Heidelberg/Berlin: Springer.
Monajjemi, V. M., Wawerla, J., Vaughan, R., & Mori, G. (2013). HRI in the sky: Creating and commanding teams of UAVs with a vision-mediated gestural interface. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2013 (pp. 617–623). https://doi.org/10.1109/IROS.2013.6696415
Mondada, L., Karim, M. E., & Mondada, F. (2016). Electroencephalography as implicit communication channel for proximal interaction between humans and robot swarms. Swarm Intelligence, 10(4), 247–265. ISSN 1935-3820. https://doi.org/10.1007/s11721-016-0127-0
Murray, J. D. (1981). A prepattern formation mechanism for animal coat markings. Journal of Theoretical Biology, 88, 161–199.
Murray, J. D. (2003). On the mechanochemical theory of biological pattern formation with application to vasculogenesis. Comptes Rendus Biologies, 326(2), 239–252.
Nagi, J., Giusti, A., Gambardella, L. M., & Di Caro, G. A. (2014). Human-swarm interaction using spatial gestures. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2014 (pp. 3834–3841). https://doi.org/10.1109/IROS.2014.6943101
Nair, R., Ito, T., Tambe, M., & Marsella, S. (2002). Task allocation in the RoboCup rescue simulation domain: A short note. In A. Birk, S. Coradeschi, & S. Tadokoro (Eds.), RoboCup 2001: Robot Soccer World Cup V (Vol. 2377, pp. 1–22). Berlin/Heidelberg: Springer. http://dx.doi.org/10.1007/3-540-45603-1_129
Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm: Self-organized strategies to find your way home. Swarm Intelligence, 2(1), 1–23.
Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.
O’Grady, R., Groß, R., Mondada, F., Bonani, M., & Dorigo, M. (2005). Self-assembly on demand in a group of physical autonomous mobile robots navigating rough terrain. In Advances in Artificial Life, 8th European Conference (ECAL) (pp. 272–281). Berlin: Springer.
Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324.
Pini, G., Brutschy, A., Francesca, G., Dorigo, M., & Birattari, M. (2012). Multi-armed bandit formulation of the task partitioning problem in swarm robotics. In 8th International Conference on Swarm Intelligence (ANTS) (pp. 109–120). Berlin: Springer.
Popkin, G. (2016). The physics of life. Nature, 529, 16–18. https://doi.org/10.1038/529016a
Potter, M. A., Meeden, L. A., & Schultz, A. C. (2001). Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists. In International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1337–1343). Los Altos, CA: Morgan Kaufmann.
Pourmehr, S., Monajjemi, V. M., Vaughan, R., & Mori, G. (2013). “you two! Take off!”: Creating, modifying and commanding groups of robots using face engagement and indirect speech in voice commands. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2013 (pp. 137–142). https://doi.org/10.1109/IROS.2013.6696344
Prorok, A., Ani Hsieh, M., & Kumar, V. (2016). Formalizing the impact of diversity on performance in a heterogeneous swarm of robots. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5364–5371). https://doi.org/10.1109/ICRA.2016.7487748
Ratnieks, F. L. W., & Anderson, C. (1999). Task partitioning in insect societies. Insectes Sociaux, 46(2), 95–108. https://doi.org/10.1007/s000400050119
Resnick, M. (1994). Turtles, termites, and traffic jams. Cambridge, MA: MIT Press.
Reynolds, C. W. (1987). Flocks, herds, and schools. Computer Graphics, 21(4), 25–34.
Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science, 345(6198), 795–799. http://dx.doi.org/10.1126/science.1254295
Rubenstein, M., & Shen, W.-M. (2009). Scalable self-assembly and self-repair in a collective of robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA, October 2009.
Russell, R. A. (1997). Heat trails as short-lived navigational markers for mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation (Vol. 4, pp. 3534–3539).
Savkin, A. V. (2004). Coordinated collective motion of groups of autonomous mobile robots: Analysis of Vicsek’s model. IEEE Transactions on Automatic Control, 49(6), 981–982.
Scheidler, A., Merkle, D., & Middendorf, M. (2013). Swarm controlled emergence for ant clustering. International Journal of Intelligent Computing and Cybernetics, 6(1), 62–82.
Schmickl, T., & Crailsheim, K. (2004). Costs of environmental fluctuations and benefits of dynamic decentralized foraging decisions in honey bees. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems, 12, 263–277.
Schmickl, T., & Hamann, H. (2011). BEECLUST: A swarm algorithm derived from honeybees. In Y. Xiao (Ed.), Bio-inspired computing and communication networks (pp. 95–137). Boca Raton, FL: CRC Press.
Schmickl, T., Hamann, H., & Crailsheim, K. (2011). Modelling a hormone-inspired controller for individual- and multi-modular robotic systems. Mathematical and Computer Modelling of Dynamical Systems, 17(3), 221–242.
Schmickl, T., Stradner, J., Hamann, H., Winkler, L., & Crailsheim, K. (2011). Major feedback loops supporting artificial evolution in multi-modular robotics. In S. Doncieux, N. Bredèche, & J.-B. Mouret (Eds.), New horizons in evolutionary robotics. Studies in computational intelligence (Vol. 341, pp. 195–209). Berlin/Heidelberg: Springer. ISBN 978-3-642-18271-6. https://doi.org/10.1007/978-3-642-18272-3
Schmickl, T., Thenius, R., Möslinger, C., Radspieler, G., Kernbach, S., & Crailsheim, K. (2008). Get in touch: Cooperative decision making based on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems, 18(1), 133–155.
Schultz, A. C., Grefenstette, J. J., & Adams, W. (1996). Robo-Shepherd: Learning complex robotic behaviors. In M. Jamshidi, F. Pin, & P. Dauchez (Eds.), Proceedings of the International Symposium on Robotics and Automation (ICRA’96) (Vol. 6, pp. 763–768). New York, NY: ASME Press.
Sempo, G., Depickère, S., Amé, J.-M., Detrain, C., Halloy, J., & Deneubourg, J.-L. (2006). Integration of an autonomous artificial agent in an insect society: Experimental validation. In S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco, J.-A. Meyer, O. Miglino, & D. Parisi (Eds.), From Animals to Animats 9: 9th International Conference on Simulation of Adaptive Behavior, SAB 2006, Rome, Italy, September 25–29, 2006. Proceedings (pp. 703–712). Berlin/Heidelberg: Springer. ISBN 978-3-540-38615-5. https://doi.org/10.1007/11840541_58
Støy, K., & Nagpal, R. (2004). Self-repair through scale independent self-reconfiguration. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004). Proceedings (Vol. 2, pp. 2062–2067). NewYork: IEEE.
Sugawara, K., Kazama, T., & Watanabe, T. (2004). Foraging behavior of interacting robots with virtual pheromone. In Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Los Alamitos, CA (pp. 3074–3079). New York: IEEE Press.
Sugawara, K., & Sno, M. (1997). Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system. Physica D, 100, 343–354.
Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., & Crailsheim, K. (2013). Dynamics of collective decision making of honeybees in complex temperature fields. PLoS One, 8(10), e76250. https://doi.org/10.1371/journal.pone.0076250. http://dx.doi.org/10.1371/journal.pone.0076250
Tarapore, D., Christensen, A. L., & Timmis, J. (2017). Generic, scalable and decentralized fault detection for robot swarms. PLoS One, 12(8), 1–29. https://doi.org/10.1371/journal.pone.0182058
Tarapore, D., Lima, P. U., Carneiro, J., & Christensen, A. L. (2015). To err is robotic, to tolerate immunological: Fault detection in multirobot systems. Bioinspiration & Biomimetics, 10(1), 016014.
Theraulaz, G., & Bonabeau, E. (1995). Coordination in distributed building. Science, 269, 686–688.
Theraulaz, G., & Bonabeau, E. (1995). Modelling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology, 177, 381–400.
Thompson, D. W. (1917). On growth and form: The complete revised edition. Cambridge: Cambridge University Press.
Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58(4), 4828–4858.
Trianni, V., Ijsselmuiden, J., & Haken, R. (2016). The SAGA concept: Swarm robotics for agricultural applications. Technical report. http://laral.istc.cnr.it/saga/wp-content/uploads/2016/09/saga-dars2016.pdf
Tuci, E., Groß, R., Trianni, V., Mondada, F., Bonani, M., & Dorigo, M. (2006). Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1(2), 115–150.
Turgut, A., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized flocking in mobile robot swarms. Swarm Intelligence, 2(2), 97–120. http://dx.doi.org/10.1007/s11721-008-0016-2
Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, B237(641), 37–72.
Twu, P., Mostofi, Y., & Egerstedt, M. (2014). A measure of heterogeneity in multi-agent systems. In American Control Conference (pp. 3972–3977).
Vestartas, P., Heinrich, M. K., Zwierzycki, M., Leon, D. A., Cheheltan, A., La Magna, R., & Ayres, P. (2018). Design tools and workflows for braided structures. In K. De Rycke, C. Gengnagel, O. Baverel, J. Burry, C. Mueller, M. M. Nguyen, P. Rahm, & M. R. Thomsen (Eds.), Humanizing Digital Reality: Design Modelling Symposium Paris 2017 (pp. 671–681). Singapore: Springer. ISBN 978-981-10-6611-5. https://doi.org/10.1007/978-981-10-6611-5_55
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 6(75), 1226–1229.
Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3–4), 71–140.
von Frisch, K. (1974). Animal architecture. San Diego, CA: Harcourt.
Wells, H., Wells, P. H., & Cook, P. (1990). The importance of overwinter aggregation for reproductive success of monarch butterflies (danaus plexippus l.). Journal of Theoretical Biology, 147(1), 115–131. ISSN 0022-5193. http://dx.doi.org/10.1016/S0022-5193(05)80255-3.
Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 754–758. http://dx.doi.org/10.1126/science.1245842
Wilson, M., Melhuish, C., Sendova-Franks, A. B., & Scholes, S. (2004). Algorithms for building annular structures with minimalist robots inspired by brood sorting in ant colonies. Autonomous Robots, 17, 115–136.
Wilson, S., Pavlic, T. P., Kumar, G. P., Buffin, A., Pratt, S. C., & Berman, S. (2014). Design of ant-inspired stochastic control policies for collective transport by robotic swarms. Swarm Intelligence, 8(4), 303–327.
Yamaguchi, H., Arai, T., & Beni, G. (2001). A distributed control scheme for multiple robotic vehicles to make group formations. Robotics and Autonomous systems, 36(4), 125–147.
Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., et al. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5464–5469. https://doi.org/10.1073/pnas.0811195106. http://www.pnas.org/content/106/14/5464.abstract
Zahadat, P., Christensen, D. J., Katebi, S. D., & Støy, K. (2010). Sensor-coupled fractal gene regulatory networks for locomotion control of a modular snake robot. In Proceedings of the 10th International Symposium on Distributed Autonomous Robotic Systems (DARS) (pp. 517–530).
Zahadat, P., Hahshold, S., Thenius, R., Crailsheim, K., & Schmickl, T. (2015). From honeybees to robots and back: Division of labor based on partitioning social inhibition. Bioinspiration & Biomimetics, 10(6), 066005. https://doi.org/10.1088/1748-3190/10/6/066005
Zahadat, P., Hofstadler, D. N., & Schmickl, T. (2017). Vascular morphogenesis controller: A generative model for developing morphology of artificial structures. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’17, New York, NY, USA (pp. 163–170). New York: ACM. ISBN 978-1-4503-4920-8. http://doi.acm.org/10.1145/3071178.3071247
Zahadat, P., & Schmickl, T. (2016). Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition. Adaptive Behavior, 24(2), 87–101. https://doi.org/10.1177/1059712316633028
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Hamann, H. (2018). Scenarios of Swarm Robotics. In: Swarm Robotics: A Formal Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-74528-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-74528-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-74526-8
Online ISBN: 978-3-319-74528-2
eBook Packages: EngineeringEngineering (R0)