Abstract
Industry 4.0 implies new scheduling problems linked to the optimal using of flexible resources and to mass customisation of products. In this context, first research results show that Discrete Event Systems models and tools are a relevant alternative to the classical approaches for modelling scheduling problems and for solving them. Moreover, the challenges of the Industry 4.0 mean taking into account the uncertainties linked to the mass customisation (volume and mix of the demand) but also to the states of the resources (failures, operation durations, ...). The goal of this paper is to show how it is possible to use the simulation based on statistical model checking for taking into account these uncertainties and for evaluating the robustness of a given schedule.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kobetski, A., Fabian, M.: Time-optimal coordination of flexible manufacturing systems using deterministic finite automata and mixed integer linear programming. J. Discr. Event Dyn. Syst. Theor. Appl. 19(3), 287–315 (2009)
Panek, S., Engell, S., Stursberg, O.: Scheduling and planning with timed automata. In: 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, pp. 1973–1978. Elsevier (2006)
Billaut, J.C., Moukrim, A., Sanlaville, E.: Flexibility and robustness in scheduling. ISTE (2010). https://doi.org/10.1002/9780470611432.ch1
Behrmann, G., Brinksma, E., Hendriks, M., Mader, A.: Production scheduling by reachability analysis—a case study. International Parallel and Distributed Processing Symposium (2005)
Marangé, P., Aubry, A., Pétin, J.F.: Ordonnancement d’ateliers à partir de patrons de modélisation basés sur des automates communicants. In: 11th International Conference on Modeling, Optimization and Simulation. Montréal, Canada (2016)
Subbiah, S., Engell, S.: Short-term scheduling of multi-product batch plants with sequence-dependent changeovers using timed automata models. In: 20th European Symposium on Computer Aided Process Engineering, 28, pp. 1201–1206. Elsevier (2010)
Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems, 2nd edn. Springer (2008)
Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods Syst. Des. (2006)
Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: Petri nets compositional modelling and verification of flexible manufacturing systems. In: Proceedings of the 7th Conference on Automation Science and Engineering (2011)
Kritzinger, P., Bause, F.: Stochastic Petri nets—An Introduction to the Theory. Vieweg + Teubner (2002)
Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems. IEEE Trans. Softw. Eng. 17(10), 1093–1108 (1991)
Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of stochastic automata networks. Eur. J. Operat. Res. (1995)
David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397–415 (2015)
Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Behrmann, G., David, A., Larsen, K.: A tutorial on uppaal. In: Proceedings of Formal Methods for the Design of Real-Time Systems, No. 3185 in Lecture Notes in Computer Science, pp. 200–236. Springer (2004)
Himmiche, S., Aubry, A., Marangé, P., Pétin, J.F.: Modeling flexible workshops scheduling problems: evaluating a timed automata based approach versus MILP. In: 20th World Congress of the International Federation of Automatic Control. Toulouse, France Accepted (2017)
Giard, V.: Gestion de la production et des flux: avec CD livre électronique + Logiciels + Animations. Economica (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Himmiche, S., Aubry, A., Marangé, P., Duflot-Kremer, M., Pétin, JF. (2018). Using Statistical-Model-Checking-Based Simulation for Evaluating the Robustness of a Production Schedule. In: Borangiu, T., Trentesaux, D., Thomas, A., Cardin, O. (eds) Service Orientation in Holonic and Multi-Agent Manufacturing. Studies in Computational Intelligence, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-73751-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-73751-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73750-8
Online ISBN: 978-3-319-73751-5
eBook Packages: EngineeringEngineering (R0)