Uyghur Text Localization with Fast Component Detection | SpringerLink
Skip to main content

Uyghur Text Localization with Fast Component Detection

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10704))

Included in the following conference series:

Abstract

Text localization in image often is an important part of image content analysis and has broad application prospects. Even though there have been many researches focus on it, fast Uyghur text localization in complex background images is still a challenging task. The obstacles mainly come from the huge extracted candidates and the heavy computation of non-text classification. In this paper, we propose a fast framework for Uyghur text localization which handle above obstacles with two effective measures. One is that we propose a stroke-specific detector based candidate extraction scheme. Compared with the common used I-MSER detector, the presented scheme not only produces 2 times less components but also runs in twice faster. The other is a component similarity based clustering is raised, which neither need the component-level classification nor the extra computations. The experiments confirm that our method has achieved the state-of-the-art on UICBI-500 benchmark dataset and runs in near real-time. The localization results also prove that the proposed method is robust to Chinese and English.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, S., Xie, H., Zhou, C., Mao, Z.: Uyghur language text detection in complex background images using enhanced MSERs. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10132, pp. 490–500. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51811-4_40

    Chapter  Google Scholar 

  2. Ye, Q., Doermann, D.: Text detection and recognition in imagery: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1480–1500 (2015)

    Article  Google Scholar 

  3. Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B., Wang, T., Wu, D.J., Ng, A.Y.: Text detection and character recognition in scene images with unsupervised feature learning. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 440–445. IEEE (2011)

    Google Scholar 

  4. Bissacco, A., Cummins, M., Netzer, Y., Neven, H.: Photoocr: reading text in uncontrolled conditions. In: IEEE International Conference on Computer Vision, pp. 785–792 (2013)

    Google Scholar 

  5. Tian, S., Pan, Y., Huang, C., Lu, S., Yu, K., Tan, C.L.: Text flow: a unified text detection system in natural scene images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4651–4659 (2015)

    Google Scholar 

  6. Tian, Z., Huang, W., He, T., He, P., Qiao, Y.: Detecting text in natural image with connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_4

    Chapter  Google Scholar 

  7. Fang, S., Xie, H., Chen, Z., Zhu, S., Gu, X., Gao, X.: Detecting Uyghur text in complex background images with convolutional neural network. Multimed. Tools Appl. 6, 1–21 (2017)

    Google Scholar 

  8. Fang, S., Xie, H., Chen, Z., Liu, Y., Li, Y.: Uyghur text matching in graphic images for biomedical semantic analysis. Neuroinformatics (2017). https://doi.org/10.1007/s12021-017-9350-0

  9. Neumann, L., Matas, J.: A method for text localization and recognition in real-world images. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 770–783. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7_60

    Chapter  Google Scholar 

  10. Neumann, L., Matas, J.: Text localization in real-world images using efficiently pruned exhaustive search. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 687–691. IEEE (2011)

    Google Scholar 

  11. Yin, X.-C., Yin, X., Huang, K., Hao, H.-W.: Robust text detection in natural scene images. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 970–983 (2014)

    Article  Google Scholar 

  12. Sung, M.-C., Jun, B., Cho, H., Kim, D.: Scene text detection with robust character candidate extraction method. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 426–430. IEEE (2015)

    Google Scholar 

  13. Chen, J., Song, Y., Xie, H., Chen, X., Deng, H., Liu, Y.: Robust Uyghur text localization in complex background images. In: Chen, E., Gong, Y., Tie, Y. (eds.) PCM 2016. LNCS, vol. 9917, pp. 406–416. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48896-7_40

    Chapter  Google Scholar 

  14. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  15. Xie, H., Zhang, Y., Gao, K., Tang, S., Xu, K., Guo, L., Li, J.: Robust common visual pattern discovery using graph matching. J. Vis. Commun. Image Represent. 24(5), 635–646 (2013)

    Article  Google Scholar 

  16. Xie, H., Gao, K., Zhang, Y., Li, J.: Local geometric consistency constraint for image retrieval. In: IEEE International Conference on Image Processing, pp. 101–104 (2011)

    Google Scholar 

  17. Song, Y., Chen, J., Xie, H., Chen, Z., Gao, X., Chen, X.: Robust and parallel Uyghur text localization in complex background images. Mach. Vis. Appl. 28(7), 755–769 (2017). https://doi.org/10.1007/s00138-017-0837-3

    Article  Google Scholar 

  18. Wolf, C., Jolion, J.-M.: Object count/area graphs for the evaluation of object detection and segmentation algorithms. Int. J. Doc. Anal. Recognit. IJDAR 8(4), 280–296 (2006)

    Article  Google Scholar 

  19. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3538–3545. IEEE (2012)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Nature Science Foundation of China (61771468 and 61327902), the Youth Innovation Promotion Association Chinese Academy of Sciences (2017209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Xie, H., Hu, Y., Yan, C. (2018). Uyghur Text Localization with Fast Component Detection. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10704. Springer, Cham. https://doi.org/10.1007/978-3-319-73603-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73603-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73602-0

  • Online ISBN: 978-3-319-73603-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics