A Method for Optimal Solution of Intuitionistic Fuzzy Transportation Problems via Centroid | SpringerLink
Skip to main content

A Method for Optimal Solution of Intuitionistic Fuzzy Transportation Problems via Centroid

  • Conference paper
  • First Online:
Econometrics for Financial Applications (ECONVN 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 760))

Included in the following conference series:

Abstract

In this work, we introduce the method for solving intuitionistic fuzzy transportation problem (IFTP) in which supplies and availability are crisp numbers and cost is intuitionistic fuzzy number (IFN). We are using centroid of IFN for the representative value of the intuitionistic fuzzy cost. In addition we are using allocation table method (ATM) to find an initial basic feasible solution (IBFS) for the IFTP. Moreover, this method is also good optimal solution in the literature and illustrated with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 42899
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Set Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  3. Gani, A.N., Razak, K.A.: Two stage fuzzy transportation problem. J. Phys. Sci. 10, 63–69 (2006)

    Google Scholar 

  4. Li, L., Huang, Z., Da, Q., Hu, J.: A new method based on goal programming for solving transportation problem with fuzzy cost. In: International Symposiums on Information Processing, pp. 3–8 (2008)

    Google Scholar 

  5. Nagarajan, R., Solairaju, A.: Computing improved fuzzy optimal Hungarian assignment problem with fuzzy costs under Robust ranking techniques. Int. J. Comput. Appl. 6(4), 6–13 (2010)

    Google Scholar 

  6. Hussain, R.J., Kumar, P.S.: Algorithmic approach for solving intuitionistic fuzzy transportation problem. Appl. Math. Sci. 6(80), 3981–3989 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Pramila, K., Uthra, G.: Optimal solution of an intuitionistic fuzzy transportation problem. Ann. Pure Appl. Math. 8(2), 67–73 (2014)

    Google Scholar 

  8. Antony, R.J.P., Savarimuthu, S.J., Pathinathan, T.: Method for solving the transportation problem using triangular intuitionistic fuzzy number. Int. J. Comput. Algorithm 3, 590–605 (2014)

    Google Scholar 

  9. Hunwisai, D., Kumam, P.: A method for solving a fuzzy transportation problem via robust ranking technique and ATM. Cogent Math. 4, 1–11 (2017)

    Article  Google Scholar 

  10. Hitchcock, F.L.: The distribution of a product several sources to numerous localities. J. Math. Phys. 20, 224–230 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  11. Varghese, A., Kuriakose, S.: Centroid of an intuitionistic fuzzy number. Notes Intuitionistic Fuzzy Set 18(1), 19–24 (2012)

    MATH  Google Scholar 

  12. Wang, Y.M., Yang, J.B., Xu, D.L., Chin, K.S.: On the centroids of fuzzy numbers. Fuzzy Sets Syst. 157, 919–926 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dantzig, G.B.: Application of the simplex method to a transportation problem. In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, pp. 359–373. Wiley, New York (1951)

    Google Scholar 

  14. Dinagar, D.S., Palanivel, K.: The transportation problem in fuzzy environment. Int. J. Algorithms Comput. Math. 2(3), 65–71 (2009)

    MATH  Google Scholar 

  15. Pandian, P., Natarajan, G.: A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems. Appl. Math. Sci. 4(20), 79–90 (2010)

    MATH  Google Scholar 

  16. Shanmugasundari, M., Ganesan, K.: A novel approach for the fuzzy optimal solution of fuzzy transportation problem. Int. J. Eng. Res. Appl. 3(1), 416–1421 (2013)

    Google Scholar 

  17. Kaur, A., Kumar, A.: A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Appl. Soft Comput. 12, 1201–1213 (2012)

    Article  Google Scholar 

  18. Srinivas, B., Ganesan, G.: Optimal solution for intuitionistic fuzzy transportation problem via revised distribution method. Int. J. Math. Tends Technol. 19(2), 150–161 (2015)

    Article  Google Scholar 

  19. Singh, S.K., Yadav, S.P.: A new approach for solving intuitionistic fuzzy transportation problem of type-2. Ann. Oper. Res. 243, 349–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ahmed, M.M., Khan, A.R., Uddin, M.S., Ahmed, F.: A new approach to solve transportation problems. Open J. Optim. 5(1), 22–30 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Theoretical and Computational Science (TaCS) Center (Project Grant No.TaCS2560-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darunee Hunwisai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hunwisai, D., Kumam, P., Kumam, W. (2018). A Method for Optimal Solution of Intuitionistic Fuzzy Transportation Problems via Centroid. In: Anh, L., Dong, L., Kreinovich, V., Thach, N. (eds) Econometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence, vol 760. Springer, Cham. https://doi.org/10.1007/978-3-319-73150-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73150-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73149-0

  • Online ISBN: 978-3-319-73150-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics