Abstract
Controllers for swarms of robots are hard to design as swarm behaviour emerges from their interaction, and so controllers are often evolved. However, these evolved controllers are often difficult to understand, limiting our ability to predict swarm behaviour. We suggest behaviour trees are a good control architecture for swarm robotics, as they are comprehensible and promote modular reuse. We design a foraging task for kilobots and evolve a behaviour tree capable of performing that task, both in simulation and reality, and show the controller is compact and understandable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Perhaps mirroring a fundamental property of nature [6].
- 2.
Chosen in simulation as a reasonable compromise between responsiveness and stability.
- 3.
Due to the elitism policy, three individuals per generation are unchanged and need no fitness evaluation.
References
Abiyev, R.H., Bektaş, Ş., Akkaya, N., Aytac, E.: Behaviour trees based decision making for soccer robots. Recent Advances in Mathematical Methods Intelligent Systems and Materials (2013)
Bagnell, J.A., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., Klingensmith, M., Libby, J., Liu, T.Y., Pollard, N., et al.: An integrated system for autonomous robotics manipulation. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2955–2962. IEEE (2012)
Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)
Catto, E.: Box2D: A 2D physics engine for games. World Wide Web electronic publication (2009). http://box2d.org/about
Champandard, A.: Behavior trees for next-gen game ai. In: Game developers conference, audio lecture (2007)
Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. Lond. B: Biol. Sci. 280(1755), 20122–20863 (2013)
Colledanchise, M., Ogren, P.: How behavior trees modularize robustness and safety in hybrid systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 1482–1488. IEEE (2014)
Cutumisu, M., Szafron, D.: An architecture for game behavior ai: behavior multi-queues. In: AIIDE (2009)
Dill, K., Martin, L.: A game ai approach to autonomous control of virtual characters. In: Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) (2011)
Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)
Dromey, R.G.: From requirements to design: formalizing the key steps. In: Proceedings of the First International Conference on Software Engineering and Formal Methods 2003, pp. 2–11. IEEE (2003)
Duarte, M., Gomes, J., Costa, V., Oliveira, S.M., Christensen, A.L.: Hybrid control for a real swarm robotics system in an intruder detection task. Applications of Evolutionary Computation, pp. 213–230. Springer, Cham (2016)
Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms of aquatic drones. In: Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, pp. 785–792. Citeseer (2014)
Fortin, F.A., Rainville, D., Gardner, M.A.G., Parizeau, M., Gagné, C., et al.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)
Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Robot. AI 3, 29 (2016)
Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., et al.: Automode-chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2–3), 125–152 (2015)
Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)
Hauert, S., Winkler, L., Zufferey, J.C., Floreano, D.: Ant-based swarming with positionless micro air vehicles for communication relay. Swarm Intell. 2(2), 167–188 (2008)
Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning information: an application in aerial communication relay. Auton. Robot. 26(1), 21–32 (2009)
Hauert, S., Zufferey, J.C., Floreano, D.: Reverse-engineering of artificially evolved controllers for swarms of robots. In: IEEE Congress on Evolutionary Computation 2009. CEC’09, pp. 55–61. IEEE (2009)
Hutchison, D.C.: Introducing BrilliantColor™ Technology. Texas Instruments white paper (2005)
Isla, D.: Handling complexity in the halo 2 ai. In: Game Developers Conference, vol. 12 (2005)
Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. Advances in Artificial Life, pp. 704–720. Springer, Berlin (1995)
Jones, S., Studley, M., Winfield, A.: Mobile GPGPU acceleration of embodied robot simulation. In: Artificial Life and Intelligent Agents: First International Symposium, ALIA 2014, Bangor, UK, November 5–6, 2014. Revised Selected Papers, Communications in Computer and Information Science. Springer (2015)
Klöckner, A.: Interfacing behavior trees with the world using description logic. In: AIAA conference on Guidance, Navigation and Control, Boston (2013)
Koza, J.R.: On the programming of computers by means of natural selection. Genetic Programming, vol. 1. MIT press, Cambridge (1992)
Lim, C.U., Baumgarten, R., Colton, S.: Evolving behaviour trees for the commercial game defcon. Applications of Evolutionary Computation, pp. 100–110. Springer, Berlin (2010)
Marzinotto, A., Colledanchise, M., Smith, C., Ogren, P.: Towards a unified behavior trees framework for robot control. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5420–5427. IEEE (2014)
Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)
Ogren, P.: Increasing modularity of uav control systems using computer game behavior trees. In: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN (2012)
Pereira, R.d.P., Engel, P.M.: A framework for constrained and adaptive behavior-based agents (2015). arXiv preprint arXiv:1506.02312
Perez, D., Nicolau, M., O’Neill, M., Brabazon, A.: Evolving behaviour trees for the mario ai competition using grammatical evolution. Applications of Evolutionary Computation, pp. 123–132. Springer, Berlin (2011)
Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. ACM (1987)
Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012)
Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. Swarm Robotics, pp. 10–20. Springer, Berlin (2005)
Scheper, K.Y., Tijmons, S., de Visser, C.C., de Croon, G.C.: Behavior trees for evolutionary robotics. Artificial life (2015)
Shoulson, A., Garcia, F.M., Jones, M., Mead, R., Badler, N.I.: Parameterizing behavior trees. In: International Conference on Motion in Games, pp. 144–155. Springer (2011)
Winfield, A.E.: Towards an engineering science of robot foraging. Distributed Autonomous Robotic Systems 8, pp. 185–192. Springer, Berlin (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Jones, S., Studley, M., Hauert, S., Winfield, A. (2018). Evolving Behaviour Trees for Swarm Robotics. In: Groß, R., et al. Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-73008-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-73008-0_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73006-6
Online ISBN: 978-3-319-73008-0
eBook Packages: EngineeringEngineering (R0)