Searching for a Non-adversarial, Uncooperative Agent on a Cycle | SpringerLink
Skip to main content

Searching for a Non-adversarial, Uncooperative Agent on a Cycle

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2017)

Abstract

Assume k robots are placed on a cycle–the perimeter of a unit (radius) disk–at a position of our choosing and can move on the cycle with maximum speed 1. A non-adversarial, uncooperative agent, called bus, is moving with constant speed s along the perimeter of the cycle. The robots are searching for the moving bus but do not know its exact location; during the search they can move anywhere on the perimeter of the cycle. We give algorithms which minimize the worst-case search time required for at least one of the robots to find the bus.

The following results are obtained for one robot. (1) If the robot knows the speed s of the bus but does not know its direction of movement then the optimal search time is shown to be exactly (1a) \(2\pi /s\), if \(s \ge 1\), (1b) \(4\pi /(s+1)\), if \(1/3 \le s \le 1\), and (1c) \(2\pi /(1-s)\), if \(s \le 1/3\). (2) If the robot does not know neither the speed nor the direction of movement of the bus then the optimal search time is shown to be \(2 \pi ( 1 + \frac{1}{s+1}) \). Moreover, for all \(\epsilon >0\) there exists a speed s such that any algorithm knowing neither the bus speed nor its direction will need time at least \(4\pi -\epsilon \) to meet the bus.

These results are also generalized to \(k \ge 2\) robots and analogous tight upper and lower bounds are proved depending on the knowledge the robots have about the speed and direction of movement of the bus.

J. Czyzowicz and E. Kranakis—Research supported in part by NSERC Discovery grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Hoboken (1987)

    MATH  Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, Boston (2003). https://doi.org/10.1007/b100809

    MATH  Google Scholar 

  3. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellman, R.: An optimal search. Siam Rev. 5(3), 274 (1963)

    Article  Google Scholar 

  6. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. AMS, Providence (2011)

    Book  MATH  Google Scholar 

  7. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10

    Chapter  Google Scholar 

  8. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Google Scholar 

  9. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (Extended Abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8_10. CoRR abs/1501.04985

    Chapter  Google Scholar 

  10. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13

    Chapter  Google Scholar 

  11. Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by agents with different speeds. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 1–13. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45249-9_1

    Chapter  Google Scholar 

  12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1), 147–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huus, E., Kranakis, E.: Rendezvous of many agents with different speeds in a cycle. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 195–209. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_14

    Chapter  Google Scholar 

  14. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kranakis, E., Krizanc, D., MacQuarrie, F., Shende, S.: Randomized rendezvous algorithms for agents on a ring with different speeds. In: ICDCN, Goa, India, 4–7 January, pp. 9:1–9:10 (2015)

    Google Scholar 

  16. Kranakis, E., Krizanc, D., Markou, E., Pagourtzis, A., Ramírez, F.: Different speeds suffice for rendezvous of two agents on arbitrary graphs. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 79–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czyzowicz, J., Dobrev, S., Godon, M., Kranakis, E., Sakai, T., Urrutia, J. (2017). Searching for a Non-adversarial, Uncooperative Agent on a Cycle. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2017. Lecture Notes in Computer Science(), vol 10718. Springer, Cham. https://doi.org/10.1007/978-3-319-72751-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72751-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72750-9

  • Online ISBN: 978-3-319-72751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics