Abstract
Assume k robots are placed on a cycle–the perimeter of a unit (radius) disk–at a position of our choosing and can move on the cycle with maximum speed 1. A non-adversarial, uncooperative agent, called bus, is moving with constant speed s along the perimeter of the cycle. The robots are searching for the moving bus but do not know its exact location; during the search they can move anywhere on the perimeter of the cycle. We give algorithms which minimize the worst-case search time required for at least one of the robots to find the bus.
The following results are obtained for one robot. (1) If the robot knows the speed s of the bus but does not know its direction of movement then the optimal search time is shown to be exactly (1a) \(2\pi /s\), if \(s \ge 1\), (1b) \(4\pi /(s+1)\), if \(1/3 \le s \le 1\), and (1c) \(2\pi /(1-s)\), if \(s \le 1/3\). (2) If the robot does not know neither the speed nor the direction of movement of the bus then the optimal search time is shown to be \(2 \pi ( 1 + \frac{1}{s+1}) \). Moreover, for all \(\epsilon >0\) there exists a speed s such that any algorithm knowing neither the bus speed nor its direction will need time at least \(4\pi -\epsilon \) to meet the bus.
These results are also generalized to \(k \ge 2\) robots and analogous tight upper and lower bounds are proved depending on the knowledge the robots have about the speed and direction of movement of the bus.
J. Czyzowicz and E. Kranakis—Research supported in part by NSERC Discovery grant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Hoboken (1987)
Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, Boston (2003). https://doi.org/10.1007/b100809
Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)
Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)
Bellman, R.: An optimal search. Siam Rev. 5(3), 274 (1963)
Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. AMS, Providence (2011)
Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10
Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9
Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (Extended Abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8_10. CoRR abs/1501.04985
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13
Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by agents with different speeds. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 1–13. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45249-9_1
Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1), 147–168 (2005)
Huus, E., Kranakis, E.: Rendezvous of many agents with different speeds in a cycle. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 195–209. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_14
Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)
Kranakis, E., Krizanc, D., MacQuarrie, F., Shende, S.: Randomized rendezvous algorithms for agents on a ring with different speeds. In: ICDCN, Goa, India, 4–7 January, pp. 9:1–9:10 (2015)
Kranakis, E., Krizanc, D., Markou, E., Pagourtzis, A., Ramírez, F.: Different speeds suffice for rendezvous of two agents on arbitrary graphs. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 79–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Czyzowicz, J., Dobrev, S., Godon, M., Kranakis, E., Sakai, T., Urrutia, J. (2017). Searching for a Non-adversarial, Uncooperative Agent on a Cycle. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2017. Lecture Notes in Computer Science(), vol 10718. Springer, Cham. https://doi.org/10.1007/978-3-319-72751-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-72751-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72750-9
Online ISBN: 978-3-319-72751-6
eBook Packages: Computer ScienceComputer Science (R0)