Querying with Uncertainty | SpringerLink
Skip to main content

Querying with Uncertainty

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2017)

Abstract

We introduce and study a new optimization problem on querying with uncertainty. k robots are required to locate a hidden item that is placed uniformly at random in one of n different locations, each associated with a probability \(p_i\), \(i=1,\ldots ,n\). If the item is placed in location i, a query trial by any of the robots reveals the item with probability \(p_i\). Each robot j is assigned a subset \(A_j\) of the locations, and is allowed to perform a random walk among them, each time step querying the current location (being visited) for the item. We are interested in determining sets \(\{A_j\}_{j=1,\ldots ,k}\) so as to minimize the expected discovery time of the item. We measure the cost by the number of queries, while there is no cost for hopping from node to node.

Our first contribution is to prove a closed formula for the expected number of steps until the treasure is found when the robots execute unanimous queries. Then we focus on querying problems where the sets \(A_j\) are restricted to be either pairwise disjoint or identical. Our findings allow us to obtain optimal solutions, when sets \(A_j\) are exclusively pairwise disjoint, requiring time \(n^{O(k)}\). In our second contribution, we devise an optimal polynomial time algorithm for querying with \(k=2\) robots even when the sets \(A_1,A_2\) are allowed to overlap. All our algorithms are based on special concavity-type properties of the expected termination time when the robots execute unanimous queries, thus inducing special structural properties of optimal solutions for the general problem.

K. Georgiou and E. Kranakis—Research supported in part by NSERC Discovery grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, P.K., Aronov, B., Har-Peled, S., Phillips, J.M., Yi, K., Zhang, W.: Nearest neighbor searching under uncertainty ii. In: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 115–126. ACM (2013)

    Google Scholar 

  2. Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Hoboken (1987)

    MATH  Google Scholar 

  3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, Heidelberg (2003). https://doi.org/10.1007/b100809

    MATH  Google Scholar 

  5. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, A., Warren, P.: The return of the linear search problem. Isr. J. Math. 14(2), 169–183 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)

    Article  Google Scholar 

  9. Chakravarty, A.K., Orlin, J.B., Rothblum, U.G.: Technical note–a partitioning problem with additive objective with an application to optimal inventory groupings for joint replenishment. Oper. Res. 30(5), 1018–1022 (1982)

    Article  MATH  Google Scholar 

  10. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Google Scholar 

  11. Czyzowicz, J., Georgiou, K., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Search on a line with byzantine robots. In: ISAAC. LIPCS (2016)

    Google Scholar 

  12. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pp. 405–414. ACM (2016)

    Google Scholar 

  13. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: FOCS, pp. 298–303. IEEE (1991)

    Google Scholar 

  14. Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative search and implications for biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5_5

    Chapter  Google Scholar 

  15. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoret. Comput. Sci. 399(3), 236–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hanusse, N., Ilcinkas, D., Kosowski, A., Nisse, N.: Locating a target with an agent guided by unreliable local advice: how to beat the random walk when you have a clock? In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 355–364. ACM (2010)

    Google Scholar 

  17. Hanusse, N., Kavvadias, D.J., Kranakis, E., Krizanc, D.: Memoryless search algorithms in a network with faulty advice. TCS 402(2–3), 190–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algorithms. J. Algorithms 29(1), 142–164 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kranakis, E., Krizanc, D.: Searching with uncertainty. In: 6th International Colloquium on Structural Information & Communication Complexity, SIROCCO 1999, Lacanau-Ocean, France, 1–3 July 1999, pp. 194–203 (1999)

    Google Scholar 

  21. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuangpishit, H., Georgiou, K., Kranakis, E. (2017). Querying with Uncertainty. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2017. Lecture Notes in Computer Science(), vol 10718. Springer, Cham. https://doi.org/10.1007/978-3-319-72751-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72751-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72750-9

  • Online ISBN: 978-3-319-72751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics