Abstract
The artificial neural network has been proved among the best tools in data mining for classification tasks. The concept of obtaining more accurate classifier with less computational complexity has been gaining importance, because of day by day increase in the data. Several numbers of models have been developed for classification problems. This paper is the depiction of higher order neural networks especially Fibonacci Functional Link Neural Network (FFLNN) for data classification. The coefficients of individual terms in Fibonacci polynomials are smaller than those of individual terms in the classical orthogonal polynomials. Additionally, less number of terms make it a preferable classifier regarding functional expansion. These properties lead this FFLNN to produce more accurate higher order neural network with less computational complexity to tackle the classification problems. Four datasets were collected from KEEL and LIBSVM dataset repositories. Computational results were compared with three benchmarked models including Chebyshev Functional Link Neural Network (CFLNN), Chebyshev Multilayer Perceptron (CMLP) and Multilayer Perceptron Neural Network (MLP). A t-test was applied to check the significance of the proposed classifier based on classification performance. The findings showed that the proposed classifier outperformed all benchmarked models in all evaluation measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 30(4), 451–462 (2000)
Misra, B.B., Dehuri, S.: Functional Link Artificial Neural Network for Classification Task in Data Mining, vol. 1 (2007)
Chen, C., Duan, S., Cai, T., Liu, B.: Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol. Energy 85(11), 2856–2870 (2011)
Al-Jarrah, O., Arafat, A.: Network intrusion detection system using neural network classification of attack behavior. J. Adv. Inf. Technol. 6(1) (2015)
Mason, M.: Classification of Handwritten Digits Using an Artificial Neural Network (2015)
Babaei, T., Lim, C.P., Abdi, H., Nahavandi, S.: A Modified functional link neural network for data classification. In: Emerging Trends in Neuro Engineering and Neural Computation, pp. 229–244. Springer, Singapore (2017)
Iqbal, U., Ghazali, R.: Chebyshev multilayer perceptron neural network with Levenberg Marquardt-back propagation learning for classification tasks. In: International Conference on Soft Computing and Data Mining, pp. 162–170. Springer, Cham (2016)
Mohmad Hassim, Y.M., Ghazali, R.: Using artificial bee colony to improve functional link neural network training. In: Applied Mechanics and Materials, pp. 2102–2108. Trans Tech Publications (2013)
Ghazali, R., Husaini, N.A., Ismail, L.H., Herawan, T., Hassim, Y.Y.M.: The performance of a Recurrent HONN for temperature time series prediction. In: 2014 International Joint Conference on Neural Network, pp. 518–524 (2014)
Ghazali, R., Hussain, A.J., Merabti, M.: Higher order neural networks and their applications to financial time series prediction. In: Artificial Intelligence and Soft Computing, pp. 120–125 (2006)
Kumar, M., Singh, S., Rath, S.K.: Classification of microarray data using functional link neural network. Proc. Comput. Sci. 57, 727–737 (2015)
Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: a review of applications. Expert Syst. App. 36(1), 2–17 (2009)
Silva-Ramírez, E.L., Pino-Mejías, R., López-Coello, M.: Single imputation with multilayer perceptron and multiple imputation combining multilayer perceptron and k-nearest neighbours for monotone patterns. Appl. Soft Comput. 29, 65–74 (2015)
Mabu, S., Obayashi, M., Kuremoto, T.: Ensemble learning of rule-based evolutionary algorithm using multi-layer perceptron for supporting decisions in stock trading problems. Appl. Soft Comput. 36, 357–367 (2015)
Jedliński, Ł., Jonak, J.: Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform. Appl. Soft Comput. 30, 636–641 (2015)
Bebarta, D.K., Rout, A.K., Biswal, B., Dash, P.K.: Forecasting and classification of Indian stocks using different polynomial functional link artificial neural networks. In: 2012 Annual IEEE India Conference (INDICON), pp. 178–182 (2012)
Pao, Y.H., Takefuji, Y.: Functional-link net computing: theory, system architecture, and functionalities. Computer 25(5), 76–79 (1992)
Li, M., Liu, J., Jiang, Y., Feng, W.: Complex-Chebyshev functional link neural network behavioral model for broadband wireless power amplifiers. IEEE Trans. Microw. Theory Tech. 60(6), 1979–1989 (2012)
Ozdemir, G., Simsek, Y.: Generating functions for two-variable polynomials related to a family of Fibonacci type polynomials and numbers. Filomat 30(4), 969–975 (2016)
Acknowledgements
The authors would like to thank King Khalid University to provide the International Research Grant with Grant number A134 for supporting this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Iqbal, U., Ghazali, R., Shah, H. (2018). Fibonacci Polynomials Based Functional Link Neural Network for Classification Tasks. In: Ghazali, R., Deris, M., Nawi, N., Abawajy, J. (eds) Recent Advances on Soft Computing and Data Mining. SCDM 2018. Advances in Intelligent Systems and Computing, vol 700. Springer, Cham. https://doi.org/10.1007/978-3-319-72550-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-72550-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72549-9
Online ISBN: 978-3-319-72550-5
eBook Packages: EngineeringEngineering (R0)