Abstract
Given a polynomial system f, this article provides a general construction for homotopies that yield at least one point of each connected component on the set of solutions of \(f = 0\). This algorithmic approach is then used to compute a superset of the isolated points in the image of an algebraic set which arises in many applications, such as computing critical sets used in the decomposition of real algebraic sets. An example is presented which demonstrates the efficiency of this approach.
D. J. Bates—Supported in part by AFOSR grant FA8650-13-1-7317, NSF ACI-1440467, and NSF DMS-1719658.
D. A. Brake and J. D. Hauenstein—Supported in part by AFOSR grant FA8650-13-1-7317 and NSF ACI-1460032.
A. J. Sommese—Supported in part by the Duncan Chair of the University of Notre Dame, AFOSR grant FA8650-13-1-7317, and NSF ACI-1440607.
C. W. Wampler—Supported in part by AFOSR grant FA8650-13-1-7317.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In usual practice, “randomization” means replacing a set of polynomials with some number of random linear combinations of the polynomials. When the appropriate number of combinations is used, then in a Zariski-open subset of the Cartesian space of coefficients of the linear combinations, the solution set of interest is preserved. See, for example, [25, Sect. 13.5]. Here, for simplicity of illustration, we take very simple linear combinations involving small integers. These happen to suffice, but in general one would use a random number generator and possibly hundreds of digits to better approximate the probability-one chance of success that is implied in a continuum model of the coefficient space.
- 2.
As before, we choose simple rational coefficients for simplicity of presentation.
References
Aubry, P., Rouillier, F., Safey El Din, M.: Real solving for positive dimensional systems. J. Symbolic Comput. 34(6), 543–560 (2002)
Bates, D.J., Hauenstein, J.D., Peterson, C., Sommese, A.J.: Numerical decomposition of the rank-deficiency set of a matrix of multivariate polynomials. In: Robbiano, L., Abbott, J. (eds.) Approximate Commutative Algebra. Texts and Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria), pp. 55–77. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-211-99314-9_2
Bates, D.J., Hauenstein, J.D., Peterson, C., Sommese, A.J.: A numerical local dimensions test for points on the solution set of a system of polynomial equations. SIAM J. Numer. Anal. 47(5), 3608–3623 (2009)
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. bertini.nd.edu
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)
Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini_real: Software for one- and two-dimensional real algebraic sets. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 175–182. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_29
Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini_real: Numerical decomposition of real algebraic curves and surfaces. ACM Trans. Math. Softw. 44(1), 10 (2017)
Chern, S.: Characteristic classes of hermitian manifolds. Annals Math. 47(1), 85–121 (1946)
Draisma, J., Horobet, E., Ottaviani, G., Sturmfels, B., Thomas, R.R.: The Euclidean distance degree of an algebraic variety. Found. Comput. Math. 16(1), 99–149 (2016)
Fulton, W.: Intersection Theory. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4612-1700-8
Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl. Math. 125(1), 105–119 (2013)
Hauenstein, J.D., Sommese, A.J.: Membership tests for images of algebraic sets by linear projections. Appl. Math. Comput. 219(12), 6809–6818 (2013)
Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regenerative cascade homotopies for solving polynomial systems. Appl. Math. Comput. 218(4), 1240–1246 (2011)
Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comp. Math. 13(3), 371–403 (2013)
Hauenstein, J.D., Wampler, C.W.: Unification and extension of intersection algorithms in numerical algebraic geometry. Appl. Math. Comput. 293, 226–243 (2017)
Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comp. 64(212), 1541–1555 (1995)
Leykin, A.: Numerical primary decomposition. In: ISSAC 2008, pp. 165–172. ACM, New York (2008)
Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a complex curve. Contemp. Math. 448, 183–205 (2007)
Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989). Errata: Appl. Math. Comput. 51(207) (1992)
Morgan, A.P., Sommese, A.J.: A homotopy for solving general polynomial systems that respects \(m\)-homogeneous structures. Appl. Math. Comput. 24, 101–113 (1987)
Rouillier, F., Roy, M.-F., Safey El Din, M.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 16(4), 716–750 (2000)
Sommese, A.J., Verschelde, J.: Numerical homotopies to compute generic points on positive dimensional algebraic sets. J. Complex. 16(3), 572–602 (2000)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical irreducible decomposition using projections from points on the components. Contemp. Math. 286, 37–51 (2001)
Sommese, A.J., Wampler, C.W.: Numerical algebraic geometry. In: The Mathematics of Numerical Analysis (Park City, UT, 1995). Lectures in Applied Mathematics, vol. 32, pp. 749–763. AMS, Providence, RI (1996)
Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)
Verschelde, J., Cools, R.: Symbolic homotopy construction. Appl. Algebra Eng. Commun. Comput. 4(3), 169–183 (1993)
Wampler, C.W., Larson, B., Erdman, A.: A new mobility formula for spatial mechanisms. In: Proceedings of the DETC/Mechanisms and Robotics Conference. ASME (2007). paper DETC2007-35574
Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)
Wang, D.: Elimination Methods. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-7091-6202-6
Wu, W., Reid, G.: Finding points on real solution components and applications to differential polynomial systems. In: ISSAC 2013, pp. 339–346. ACM, New York (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bates, D.J., Brake, D.A., Hauenstein, J.D., Sommese, A.J., Wampler, C.W. (2017). Homotopies for Connected Components of Algebraic Sets with Application to Computing Critical Sets. In: Blömer, J., Kotsireas, I., Kutsia, T., Simos, D. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2017. Lecture Notes in Computer Science(), vol 10693. Springer, Cham. https://doi.org/10.1007/978-3-319-72453-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-72453-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72452-2
Online ISBN: 978-3-319-72453-9
eBook Packages: Computer ScienceComputer Science (R0)