Privacy Preserving Hierarchical Clustering over Multi-party Data Distribution | SpringerLink
Skip to main content

Privacy Preserving Hierarchical Clustering over Multi-party Data Distribution

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2017)

Abstract

This paper presents a framework for constructing a hierarchical categorical clustering algorithm on horizontal and vertical partitioned dataset. It is assumed that data is distributed between more than two parties, such that for general benefits all are willing to detect the clusters on whole dataset, but for privacy concerns, they avoid to share the original datasets. To this end, we propose algorithms based on distributed secure sum and secure number comparison protocols to securely compute the desired criteria in constructing clusters’ scheme without revealing private data.

This work has been supported by the H2020 EU funded project C3ISP [GA #700294].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artoisenet, C., Roland, M., Closon, M.: Health networks: actors, professional relationships, and controversies. In: Collaborative Patient Centred eHealth, vol. 141. IOS Press (2013)

    Google Scholar 

  2. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bogan, E., English, J.: Benchmarking for Best Practices: Winning Through Innovative Adaptation (1994)

    Google Scholar 

  4. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 486–497. ACM, New York (2007)

    Google Scholar 

  5. Emekci, F., Sahin, O., Agrawal, D., Abbadi, A.E.: Privacy preserving decision tree learning over multiple parties. Data Knowl. Eng. 63(2), 348–361 (2007)

    Article  Google Scholar 

  6. Faiella, M.F., Marra, A.L., Martinelli, F., Mercaldo, F., Saracino, A., Sheikhalishahi, M.: A distributed framework for collaborative and dynamic analysis of android malware. In: 25th Conference on Parallel, Distributed, and Network-Based Processing, St. Petersburg (2017)

    Google Scholar 

  7. Inan, A., Kaya, S.V., Saygn, Y., Savas, E., Hintoglu, A.A., Levi, A.: Privacy preserving clustering on horizontally partitioned data. Data Knowl. Eng. 63(3), 646–666 (2007). 25th International Conference on Conceptual Modeling (ER 2006)

    Article  Google Scholar 

  8. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A new privacy-preserving distributed k-clustering algorithm. In: SDM, pp. 494–498. SIAM (2006)

    Google Scholar 

  9. Jha, S., Kruger, L., McDaniel, P.: Privacy preserving clustering. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397–417. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_23

    Chapter  Google Scholar 

  10. Martinelli, F., Saracino, A., Sheikhalishahi, M.: Modeling privacy aware information sharing systems: a formal and general approach. In: 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (2016)

    Google Scholar 

  11. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 94–103 (2007)

    Google Scholar 

  12. Oliveira, S.R.M., Zaïane, O.R.: Privacy preserving frequent itemset mining. In: Proceedings of the IEEE International Conference on Privacy, Security and Data Mining, CRPIT 2014, vol. 14, pp. 43–54 (2002)

    Google Scholar 

  13. Sheikh, R., Kumar, B., Mishra, D.K.: A distributed k-secure sum protocol for secure multi-party computations. CoRR abs/1003.4071 (2010)

    Google Scholar 

  14. Sheikhalishahi, M., Saracino, A., Mejri, M., Tawbi, N., Martinelli, F.: Fast and effective clustering of spam emails based on structural similarity. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 195–211. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-30303-1_12

    Chapter  Google Scholar 

  15. Sheikhalishahi, M., Martinelli, F.: Privacy preserving clustering over horizontal and vertical partitioned data. In: 2017 IEEE Symposium on Computers and Communications, ISCC 2017, Heraklion, Greece, pp. 1237–1244, 3–6 July 2017

    Google Scholar 

  16. Sheikhalishahi, M., Martinelli, F.: Privacy-utility feature selection as a privacy mechanism in collaborative data classification. In: The 26th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, Poznan, Poland (2017)

    Google Scholar 

  17. Sheikhalishahi, M., Mejri, M., Tawbi, N., Martinelli, F.: Privacy-aware data sharing in a tree-based categorical clustering algorithm. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51966-1_11

    Chapter  Google Scholar 

  18. Vaidya, J., Clifton, C., Kantarcioglu, M., Patterson, A.S.: Privacy-preserving decision trees over vertically partitioned data. ACM Trans. Knowl. Discov. Data 2(3), 14:1–14:27 (2008)

    Article  Google Scholar 

  19. Xiao, M.J., Huang, L.S., Luo, Y.L., Shen, H.: Privacy preserving ID3 algorithm over horizontally partitioned data. In: Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT 2005), pp. 239–243, December 2005

    Google Scholar 

  20. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp. 160–164. IEEE Computer Society, Washington, D.C. (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Sheikhalishahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheikhalishahi, M., Martinelli, F. (2017). Privacy Preserving Hierarchical Clustering over Multi-party Data Distribution. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, KK. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2017. Lecture Notes in Computer Science(), vol 10656. Springer, Cham. https://doi.org/10.1007/978-3-319-72389-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72389-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72388-4

  • Online ISBN: 978-3-319-72389-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics