Abstract
This paper presents a framework for constructing a hierarchical categorical clustering algorithm on horizontal and vertical partitioned dataset. It is assumed that data is distributed between more than two parties, such that for general benefits all are willing to detect the clusters on whole dataset, but for privacy concerns, they avoid to share the original datasets. To this end, we propose algorithms based on distributed secure sum and secure number comparison protocols to securely compute the desired criteria in constructing clusters’ scheme without revealing private data.
This work has been supported by the H2020 EU funded project C3ISP [GA #700294].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Artoisenet, C., Roland, M., Closon, M.: Health networks: actors, professional relationships, and controversies. In: Collaborative Patient Centred eHealth, vol. 141. IOS Press (2013)
Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006)
Bogan, E., English, J.: Benchmarking for Best Practices: Winning Through Innovative Adaptation (1994)
Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 486–497. ACM, New York (2007)
Emekci, F., Sahin, O., Agrawal, D., Abbadi, A.E.: Privacy preserving decision tree learning over multiple parties. Data Knowl. Eng. 63(2), 348–361 (2007)
Faiella, M.F., Marra, A.L., Martinelli, F., Mercaldo, F., Saracino, A., Sheikhalishahi, M.: A distributed framework for collaborative and dynamic analysis of android malware. In: 25th Conference on Parallel, Distributed, and Network-Based Processing, St. Petersburg (2017)
Inan, A., Kaya, S.V., Saygn, Y., Savas, E., Hintoglu, A.A., Levi, A.: Privacy preserving clustering on horizontally partitioned data. Data Knowl. Eng. 63(3), 646–666 (2007). 25th International Conference on Conceptual Modeling (ER 2006)
Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A new privacy-preserving distributed k-clustering algorithm. In: SDM, pp. 494–498. SIAM (2006)
Jha, S., Kruger, L., McDaniel, P.: Privacy preserving clustering. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397–417. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_23
Martinelli, F., Saracino, A., Sheikhalishahi, M.: Modeling privacy aware information sharing systems: a formal and general approach. In: 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (2016)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 94–103 (2007)
Oliveira, S.R.M., Zaïane, O.R.: Privacy preserving frequent itemset mining. In: Proceedings of the IEEE International Conference on Privacy, Security and Data Mining, CRPIT 2014, vol. 14, pp. 43–54 (2002)
Sheikh, R., Kumar, B., Mishra, D.K.: A distributed k-secure sum protocol for secure multi-party computations. CoRR abs/1003.4071 (2010)
Sheikhalishahi, M., Saracino, A., Mejri, M., Tawbi, N., Martinelli, F.: Fast and effective clustering of spam emails based on structural similarity. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 195–211. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-30303-1_12
Sheikhalishahi, M., Martinelli, F.: Privacy preserving clustering over horizontal and vertical partitioned data. In: 2017 IEEE Symposium on Computers and Communications, ISCC 2017, Heraklion, Greece, pp. 1237–1244, 3–6 July 2017
Sheikhalishahi, M., Martinelli, F.: Privacy-utility feature selection as a privacy mechanism in collaborative data classification. In: The 26th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, Poznan, Poland (2017)
Sheikhalishahi, M., Mejri, M., Tawbi, N., Martinelli, F.: Privacy-aware data sharing in a tree-based categorical clustering algorithm. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51966-1_11
Vaidya, J., Clifton, C., Kantarcioglu, M., Patterson, A.S.: Privacy-preserving decision trees over vertically partitioned data. ACM Trans. Knowl. Discov. Data 2(3), 14:1–14:27 (2008)
Xiao, M.J., Huang, L.S., Luo, Y.L., Shen, H.: Privacy preserving ID3 algorithm over horizontally partitioned data. In: Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT 2005), pp. 239–243, December 2005
Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp. 160–164. IEEE Computer Society, Washington, D.C. (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sheikhalishahi, M., Martinelli, F. (2017). Privacy Preserving Hierarchical Clustering over Multi-party Data Distribution. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, KK. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2017. Lecture Notes in Computer Science(), vol 10656. Springer, Cham. https://doi.org/10.1007/978-3-319-72389-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-72389-1_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72388-4
Online ISBN: 978-3-319-72389-1
eBook Packages: Computer ScienceComputer Science (R0)