Generating Realistic Road Usage Information and Origin-Destination Data for Traffic Simulations: Augmenting Agent-Based Models with Network Techniques | SpringerLink
Skip to main content

Generating Realistic Road Usage Information and Origin-Destination Data for Traffic Simulations: Augmenting Agent-Based Models with Network Techniques

  • Conference paper
  • First Online:
Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

Abstract

We present a novel network approach, supported by an agent-based simulation using empirical survey results, in order to generate origin-destination data and information about the road usage of a large, urban traffic system. Additionally, we investigate congestion and its effects on road usage due to traffic jam avoidance strategies. The investigated city serves as a case study and the presented method can be easily adapted for arbitrary traffic networks. We find that the use of network techniques offers various advantages and can replace aspects that are traditionally performed by computationally more expensive methods. Our method shifts the computational efforts from individual agent interactions to more elegant network techniques, which leads to much lower computation time and better scaling properties. Results are evaluated and show high conformance with measured data, especially if congestion effects are included. Furthermore, the obtained data can be used as an input for car-following models or other types of traffic simulation to gain even more information about the investigated traffic network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 42899
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, H., Fu, L.: Developing a high-resolution vehicular emission inventory by integrating an emission model and a traffic model: Part 1—Modeling fuel consumption and emissions based on speed and vehicle-specific power. J. Air Waste Manag. Assoc. 60(12), 1463–1470 (2010)

    Google Scholar 

  2. Caponio, G.: Commuting carbon dioxide (CO2) emissions: A study of ten Italian metropolitan cities. G. Caponio*, G. Mascolo, G. Mummolo, G. Mossa, S. Digiesi (2015)

    Google Scholar 

  3. Berkowicz, R., Winther, M., Ketzel, M.: Traffic pollution modelling and emission data. Environ. Model. Softw. 21(4), 454–460 (2006)

    Google Scholar 

  4. Steele, C.: A critical review of some traffic noise prediction models. Appl. Acoust. 62(3), 271–287 (2001)

    Google Scholar 

  5. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035 (1995)

    Google Scholar 

  6. Grote, M., Williams, I., Preston, J., Kemp, S.: Including congestion effects in urban road traffic CO 2 emissions modelling: Do Local Government Authorities have the right options?. Transp. Res. Part D: Transp. Environ. 43, 95–106 (2016)

    Google Scholar 

  7. Helbing, D., Armbruster, D., Mikhailov, A.S., Lefeber, E.: Information and material flows in complex networks. Phys. A: Stat. Mech. Appl. 363(1), xi–xvi (2006)

    Google Scholar 

  8. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)

    Google Scholar 

  9. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2(12), 2221–2229 (1992)

    Google Scholar 

  10. Bazzan, A.L., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29(3), 375–403 (2014)

    Google Scholar 

  11. Chen, B., Cheng, H.H.: A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Trans. Syst. 11(2), 485–497 (2010)

    Google Scholar 

  12. Vissim, P.: 5.10 User Manual, PTV Planung Transport Verkehr AG, Stumpfstraße, vol. 1 (2008)

    Google Scholar 

  13. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K.: MATSim-T: Architecture and simulation times. In: Proceeding of the Multi-agent Systems for Traffic and Transportation Engineering, IGI Global, pp. 57–78 (2009)

    Google Scholar 

  14. Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: SUMO (Simulation of Urban MObility)-an open-source traffic simulation. In: Proceedings of the 4th Middle East Symposium on Simulation and Modelling (MESM20002), pp. 183–187 (2002)

    Google Scholar 

  15. Nagurney, A., Dong, J.: A multiclass, multicriteria traffic network equilibrium model with elastic demand. Transp. Res. Part B Methodol. 36(5), 445–469 (2002)

    Google Scholar 

  16. Cascetta, E.: Estimation of trip matrices from traffic counts and survey data: a generalized least squares estimator. Transp. Res. Part B Methodol. 18(4), 289–299 (1984)

    Google Scholar 

  17. Caceres, N., Wideberg, J., Benitez, F.: Deriving origin–destination data from a mobile phone network. IET Intell. Transp. Syst. 1(1), 15–26 (2007)

    Google Scholar 

  18. Tomschy, R. et al.: Oesterreich unterwegs 2013/2014: Ergebnisbericht zur oesterreichweiten Mobilitaetserhebung. Oesterreich unterwegs 2013/2014 (2016)

    Google Scholar 

  19. Boeing, G.: OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

    Google Scholar 

  20. Map, O.S.: Open street map 18, Retrieved June (2017)

    Google Scholar 

  21. Statistik Austria: Registerzählung 2011. Statistik Austria Pendlerstatistik (2011)

    Google Scholar 

  22. FGSV: Richtlinien für die Anlage von Straßen (RAS) Teil: Querschnitte (RAS-Q). FGSV-Verlag, Köln (2006)

    Google Scholar 

  23. Höfler, F.: Verkehrswesen-Praxis-Band 1: Verkehrsplanung (2004)

    Google Scholar 

  24. De Palma, A., Rochat, D.: Understanding individual travel decisions: results from a commuters survey in Geneva. Transportation 26(3), 263–281 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hofer, C., Jäger, G., Füllsack, M. (2018). Generating Realistic Road Usage Information and Origin-Destination Data for Traffic Simulations: Augmenting Agent-Based Models with Network Techniques. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_99

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics