A Study on CART Based on Maximum Probabilistic-Based Rough Set | SpringerLink
Skip to main content

A Study on CART Based on Maximum Probabilistic-Based Rough Set

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2017)

Abstract

The Classification and Regression Tree (CART) recursively partitions the measurement space, displaying the resulting partitions as decision tree. However, the performance of CART-based decision tree degrades while dealing with high-dimensional large data sets. This research work studies CART, based on Maximum Probabilistic-based Rough Set (MPBRS). The MPBRS has been used as a tool for insignificant data reduction without sacrificing information content. This paper also studies CART, based on Pawlak rough set and Bayesian Decision Theoretic Rough Set (BDTRS) for comparative analysis. Experimental results on three different data sets show that the MPBRS-based CART constructs improved decision tree for better classification efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattacharya (Halder), S.: A study on Bayesian decision theoretic rough set. Int. J. Rough Sets Data Anal. (IJRSDA) 1(1), 1–14 (2014)

    Google Scholar 

  2. Bhattacharya (Halder), S., Debnath, K.: Attribute reduction using Bayesian decision theoretic rough set models. Int. J. Rough Sets Data Anal. (IJRSDA) 1(1), 15–31 (2014)

    Google Scholar 

  3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1984). ISBN 978-0-412-04841-8

    MATH  Google Scholar 

  4. Ferraro, M.B., Giordani, P.: A toolbox for fuzzy clustering using the R programming language. Fuzzy Sets Syst. 279, 1–16 (2015). Elsevier

    Google Scholar 

  5. Harrison, D., Rubinfeld, D.L.: Hedonic prices and the demand for clean air. J. Environ. Econ. Manag. 5, 81–102 (1978)

    Article  MATH  Google Scholar 

  6. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996)

    Google Scholar 

  7. Pal, U., Bhattacharya (Halder), S., Debnath, K.: A Study on Maximum Probabilistic Based Rough Set (MPBRS), Communicated

    Google Scholar 

  8. Pal, U., Bhattacharya (Halder), S., Debnath, K.: R implementation of bayesian decision theoretic rough set model for attribute reduction. In: Bhattacharyya, S., Sen, S., Dutta, M., Biswas, P., Chattopadhyay, H. (eds.) Industry Interactive Innovations in Science, Engineering and Technology. LNNS, vol. 11, pp. 459–466. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-3953-9_44

    Chapter  Google Scholar 

  9. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  10. Questier, F., Put, R., Coomans, D., Walczak, B., Vander Heyden, Y.: The use of CART and multivariate regression trees for supervised and unsupervised feature selection. Chemometr. Intell. Lab. Syst. 76(1), 45–54 (2005). https://doi.org/10.1016/j.chemolab.2004.09.003. ISSN 0169-7439

    Article  Google Scholar 

  11. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  12. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27, 221–234 (1987)

    Article  Google Scholar 

  13. R Development Core Team: R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing, Vienna (2011). http://www.R-project.org/. Accessed 08 June 2016. ISBN 3-900051-07-0

  14. Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Slezak, D., Benitez, J.M.: Implementing algorithms of rough set theory and fuzzy rough set theory in the R package ‘‘RoughSets’’. Inf. Sci. 287, 68–89 (2014). Elsevier

    Google Scholar 

  15. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowiski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 311–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  16. Slezak, D., Ziarko, W.: Bayesian rough set model. In: Proceedings of the International Workshop on Foundation of Data mining, Japan, pp. 131–135 (2002)

    Google Scholar 

  17. Stuart, L.C.: Extensions to the CART algorithm. Int. J. Man-Mach. Stud. 31(2), 197–217 (1989). https://doi.org/10.1016/0020-7373(89). ISSN 0020-7373

    Article  Google Scholar 

  18. Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 286–318. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  19. Yao, Y.Y.: Probabilistic approaches on rough sets. Expert Syst. 20, 287–297 (2003)

    Article  Google Scholar 

  20. Yao, Y.Y., Wong, S.K., Lingras, P.: A decision theoretic rough set model. In: Ras, Z.W., Zemankova, M., Emrich, M.L. (eds.) Methodologies for Intelligent Systems, vol. 5, pp. 17–24. North Holland, New York (1990)

    Google Scholar 

  21. Zhiling, C., Qingmin, Z., Qinglian, Y.: A method based on rough set to construct decision tree. J. Nanjing Univ. Technol. 27, 80–83 (2005)

    Google Scholar 

  22. Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29. Accessed 21 June 2017

  24. http://archive.ics.uci.edu/ml/datasets/Spambase. Accessed 21 June 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, U., Bhattacharya (Halder), S., Debnath, K. (2017). A Study on CART Based on Maximum Probabilistic-Based Rough Set. In: Ghosh, A., Pal, R., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2017. Lecture Notes in Computer Science(), vol 10682. Springer, Cham. https://doi.org/10.1007/978-3-319-71928-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71928-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71927-6

  • Online ISBN: 978-3-319-71928-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics