Abstract
In recent years, thermal infrared imaging has gained an increasing attention in person monitoring tasks due to its numerous advantages such as illumination invariance and its ability to monitor vital parameters directly. Many of these applications require facial region monitoring. In this context, several methods for face detection in thermal infrared images have been developed. Nearly all of the approaches introduced in this context make use of specific properties of facial images in the thermal infrared domain, such as local temperature maxima in the eye area or the fact that human bodies usually have a higher temperature radiation than the backgrounds used. On the other side, a number of well-performing methods for face detection in the visual spectrum has been introduced in recent years. These approaches use state-of-the-art algorithms from machine learning and feature extraction to detect faces in photographs and videos. So far, only one of these algorithms has been successfully applied to thermal infrared images. In our work, we therefore analyze how a larger number of these algorithms can be adapted to thermal infrared images and show that a wide number of recently introduced algorithms for face detection in the visual spectrum can be trained to work in the thermal spectrum when an appropriate training database is available. Our evaluation shows that these machine-learning based approaches outperform thermal-specific solutions in terms of detection accuracy and false positive rate. In conclusion, we can show that well-performing methods introduced for face detection in the visual spectrum can also be used for face detection in thermal infrared images, making dedicated thermal-specific solutions unnecessary.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35, 2930–2940 (2013)
Bhowmik, M.K., Saha, K., Majumder, S., Majumder, G., Saha, A., Sarma, A.N., Bhattacharjee, D., Basu, D.K., Nasipuri, M.: Thermal infrared face recognitiona biometric identification technique for robust security system. In: Reviews, refinements and new ideas in face recognition, pp. 113–138 (2011)
Buddharaju, P., Pavlidis, I.T., Tsiamyrtzis, P., Bazakos, M.: Physiology-based face recognition in the thermal infrared spectrum. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 613–626 (2007)
Chakraborty, M., Raman, S.K., Mukhopadhyay, S., Patsa, S., Anjum, N., Ray, J.G.: High precision automated face localization in thermal images: oral cancer dataset as test case. In: Proceedings of SPIE, vol. 10133, pp. 1013326–1013326-7 (2017). http://dx.doi.org/10.1117/12.2254236
Chakrabortya, M., Ramanb, S., Mukhopadhyaya, S., Patsac, S., Anjumc, N., Rayc, J.: High precision automated face localization in thermal images: oral cancer dataset as test case. In: SPIE Medical Imaging, p. 1013326. International Society for Optics and Photonics (2017)
Cruz-Albarran, I.A., Benitez-Rangel, J.P., Osornio-Rios, R.A., Morales-Hernandez, L.A.: Human emotions detection based on a smart thermal system of thermographic images. Infrared Phys. Technol. 81, 250–261 (2017)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
Friedrich, G., Yeshurun, Y.: Seeing people in the dark: face recognition in infrared images. In: Bülthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 348–359. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36181-2_35
Gade, R., Moeslund, T.B.: Thermal cameras and applications: a survey. Mach. Vis. Appl. 25(1), 245–262 (2014)
Ghiass, R.S., Arandjelović, O., Bendada, A.H., Maldague, X.: Infrared face recognition: a comprehensive review of methodologies and databases. Pattern Recogn. 47(9), 2807–2824 (2014)
Itseez: open source computer vision library (2015). https://github.com/itseez/opencv
King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)
Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A.: Recent advances in visual and infrared face recognitiona review. Comput. Vis. Image Underst. 97(1), 103–135 (2005). http://www.sciencedirect.com/science/article/pii/S1077314204000451
Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_49
Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_87
Markuš, N., Frljak, M., Pandžić, I.S., Ahlberg, J., Forchheimer, R.: Object detection with pixel intensity comparisons organized in decision trees. arXiv preprint arXiv:1305.4537 (2013)
Mostafa, E., Hammoud, R., Ali, A., Farag, A.: Face recognition in low resolution thermal images. Comput. Vis. Image Underst. 117(12), 1689–1694 (2013)
Park, K.K., Suk, H.W., Hwang, H., Lee, J.H.: A functional analysis of deception detection of a mock crime using infrared thermal imaging and the concealed information test. Front. Hum. Neurosci. 7, 70 (2013)
Paul, M., Blanik, N., Blazek, V., Leonhardt, S.: An efficient method for facial component detection in thermal images. In: The International Conference on Quality Control by Artificial Vision 2015, p. 95340P. International Society for Optics and Photonics (2015)
Pavlidis, I., Tsiamyrtzis, P., Shastri, D., Wesley, A., Zhou, Y., Lindner, P., Buddharaju, P., Joseph, R., Mandapati, A., Dunkin, B., et al.: Fast by nature-how stress patterns define human experience and performance in dexterous tasks. Sci. Rep. 2, 305 (2012)
Reese, K., Zheng, Y., Elmaghraby, A.: A comparison of face detection algorithms in visible and thermal spectrums. In: International Conference on Advances in Computer Science and Application (2012)
Salazar-López, E., Domínguez, E., Ramos, V.J., de la Fuente, J., Meins, A., Iborra, O., Gálvez, G., Rodríguez-Artacho, M., Gómez-Milán, E.: The mental and subjective skin: emotion, empathy, feelings and thermography. Conscious. Cogn. 34, 149–162 (2015)
Sumriddetchkajorn, S., Somboonkaew, A.: Face detection in thermal imagery using an open source computer vision library. In: Proceedings of SPIE, vol. 7299, pp. 729906–729906-6 (2009). http://dx.doi.org/10.1117/12.819996
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)
Wang, S., Liu, Z., Lv, S., Lv, Y., Wu, G., Peng, P., Chen, F., Wang, X.: A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Trans. Multimed. 12(7), 682–691 (2010)
Wong, W.K., Hui, J.H., Desa, J.B.M., Ishak, N.I.N.B., Sulaiman, A.B., Nor, Y.B.M.: Face detection in thermal imaging using head curve geometry. In: 2012 5th International Congress on Image and Signal Processing (CISP), pp. 881–884. IEEE (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kopaczka, M., Nestler, J., Merhof, D. (2017). Face Detection in Thermal Infrared Images: A Comparison of Algorithm- and Machine-Learning-Based Approaches. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-70353-4_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70352-7
Online ISBN: 978-3-319-70353-4
eBook Packages: Computer ScienceComputer Science (R0)