Face Detection in Thermal Infrared Images: A Comparison of Algorithm- and Machine-Learning-Based Approaches | SpringerLink
Skip to main content

Face Detection in Thermal Infrared Images: A Comparison of Algorithm- and Machine-Learning-Based Approaches

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

Abstract

In recent years, thermal infrared imaging has gained an increasing attention in person monitoring tasks due to its numerous advantages such as illumination invariance and its ability to monitor vital parameters directly. Many of these applications require facial region monitoring. In this context, several methods for face detection in thermal infrared images have been developed. Nearly all of the approaches introduced in this context make use of specific properties of facial images in the thermal infrared domain, such as local temperature maxima in the eye area or the fact that human bodies usually have a higher temperature radiation than the backgrounds used. On the other side, a number of well-performing methods for face detection in the visual spectrum has been introduced in recent years. These approaches use state-of-the-art algorithms from machine learning and feature extraction to detect faces in photographs and videos. So far, only one of these algorithms has been successfully applied to thermal infrared images. In our work, we therefore analyze how a larger number of these algorithms can be adapted to thermal infrared images and show that a wide number of recently introduced algorithms for face detection in the visual spectrum can be trained to work in the thermal spectrum when an appropriate training database is available. Our evaluation shows that these machine-learning based approaches outperform thermal-specific solutions in terms of detection accuracy and false positive rate. In conclusion, we can show that well-performing methods introduced for face detection in the visual spectrum can also be used for face detection in thermal infrared images, making dedicated thermal-specific solutions unnecessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35, 2930–2940 (2013)

    Article  Google Scholar 

  2. Bhowmik, M.K., Saha, K., Majumder, S., Majumder, G., Saha, A., Sarma, A.N., Bhattacharjee, D., Basu, D.K., Nasipuri, M.: Thermal infrared face recognitiona biometric identification technique for robust security system. In: Reviews, refinements and new ideas in face recognition, pp. 113–138 (2011)

    Google Scholar 

  3. Buddharaju, P., Pavlidis, I.T., Tsiamyrtzis, P., Bazakos, M.: Physiology-based face recognition in the thermal infrared spectrum. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 613–626 (2007)

    Article  Google Scholar 

  4. Chakraborty, M., Raman, S.K., Mukhopadhyay, S., Patsa, S., Anjum, N., Ray, J.G.: High precision automated face localization in thermal images: oral cancer dataset as test case. In: Proceedings of SPIE, vol. 10133, pp. 1013326–1013326-7 (2017). http://dx.doi.org/10.1117/12.2254236

  5. Chakrabortya, M., Ramanb, S., Mukhopadhyaya, S., Patsac, S., Anjumc, N., Rayc, J.: High precision automated face localization in thermal images: oral cancer dataset as test case. In: SPIE Medical Imaging, p. 1013326. International Society for Optics and Photonics (2017)

    Google Scholar 

  6. Cruz-Albarran, I.A., Benitez-Rangel, J.P., Osornio-Rios, R.A., Morales-Hernandez, L.A.: Human emotions detection based on a smart thermal system of thermographic images. Infrared Phys. Technol. 81, 250–261 (2017)

    Article  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  8. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  9. Friedrich, G., Yeshurun, Y.: Seeing people in the dark: face recognition in infrared images. In: Bülthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 348–359. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36181-2_35

    Chapter  Google Scholar 

  10. Gade, R., Moeslund, T.B.: Thermal cameras and applications: a survey. Mach. Vis. Appl. 25(1), 245–262 (2014)

    Article  Google Scholar 

  11. Ghiass, R.S., Arandjelović, O., Bendada, A.H., Maldague, X.: Infrared face recognition: a comprehensive review of methodologies and databases. Pattern Recogn. 47(9), 2807–2824 (2014)

    Article  Google Scholar 

  12. Itseez: open source computer vision library (2015). https://github.com/itseez/opencv

  13. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  14. Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A.: Recent advances in visual and infrared face recognitiona review. Comput. Vis. Image Underst. 97(1), 103–135 (2005). http://www.sciencedirect.com/science/article/pii/S1077314204000451

    Article  Google Scholar 

  15. Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_49

    Chapter  Google Scholar 

  16. Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_87

    Chapter  Google Scholar 

  17. Markuš, N., Frljak, M., Pandžić, I.S., Ahlberg, J., Forchheimer, R.: Object detection with pixel intensity comparisons organized in decision trees. arXiv preprint arXiv:1305.4537 (2013)

  18. Mostafa, E., Hammoud, R., Ali, A., Farag, A.: Face recognition in low resolution thermal images. Comput. Vis. Image Underst. 117(12), 1689–1694 (2013)

    Article  Google Scholar 

  19. Park, K.K., Suk, H.W., Hwang, H., Lee, J.H.: A functional analysis of deception detection of a mock crime using infrared thermal imaging and the concealed information test. Front. Hum. Neurosci. 7, 70 (2013)

    Google Scholar 

  20. Paul, M., Blanik, N., Blazek, V., Leonhardt, S.: An efficient method for facial component detection in thermal images. In: The International Conference on Quality Control by Artificial Vision 2015, p. 95340P. International Society for Optics and Photonics (2015)

    Google Scholar 

  21. Pavlidis, I., Tsiamyrtzis, P., Shastri, D., Wesley, A., Zhou, Y., Lindner, P., Buddharaju, P., Joseph, R., Mandapati, A., Dunkin, B., et al.: Fast by nature-how stress patterns define human experience and performance in dexterous tasks. Sci. Rep. 2, 305 (2012)

    Article  Google Scholar 

  22. Reese, K., Zheng, Y., Elmaghraby, A.: A comparison of face detection algorithms in visible and thermal spectrums. In: International Conference on Advances in Computer Science and Application (2012)

    Google Scholar 

  23. Salazar-López, E., Domínguez, E., Ramos, V.J., de la Fuente, J., Meins, A., Iborra, O., Gálvez, G., Rodríguez-Artacho, M., Gómez-Milán, E.: The mental and subjective skin: emotion, empathy, feelings and thermography. Conscious. Cogn. 34, 149–162 (2015)

    Article  Google Scholar 

  24. Sumriddetchkajorn, S., Somboonkaew, A.: Face detection in thermal imagery using an open source computer vision library. In: Proceedings of SPIE, vol. 7299, pp. 729906–729906-6 (2009). http://dx.doi.org/10.1117/12.819996

  25. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  26. Wang, S., Liu, Z., Lv, S., Lv, Y., Wu, G., Peng, P., Chen, F., Wang, X.: A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Trans. Multimed. 12(7), 682–691 (2010)

    Article  Google Scholar 

  27. Wong, W.K., Hui, J.H., Desa, J.B.M., Ishak, N.I.N.B., Sulaiman, A.B., Nor, Y.B.M.: Face detection in thermal imaging using head curve geometry. In: 2012 5th International Congress on Image and Signal Processing (CISP), pp. 881–884. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kopaczka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kopaczka, M., Nestler, J., Merhof, D. (2017). Face Detection in Thermal Infrared Images: A Comparison of Algorithm- and Machine-Learning-Based Approaches. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics