Abstract
The relationship among three correlated variables could be very sophisticated, as a result, we may not be able to find their hidden causality and model their relationship explicitly. However, we still can make our best guess for possible mappings among these variables, based on the observed relationship. One of the complicated relationships among three correlated variables could be a two-layer hierarchical many-to-many mapping. In this paper, we proposed a Hierarchical Mixture Density Network (HMDN) to model the two-layer hierarchical many-to-many mapping. We apply HMDN on an indoor positioning problem and show its benefit.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bazzani, L., Larochelle, H., Torresani, L.: Recurrent mixture density network for spatiotemporal visual attention. arXiv preprint (2016). arXiv:1603.08199
Berio, D., Akten, M., Leymarie, F.F., Grierson, M., Plamondon, R.: Sequence generation with a physiologically plausible model of handwriting and recurrent mixture density networks (2016)
Bishop, C.M.: Mixture density networks (1994)
Herzallah, R., Lowe, D.: A mixture density network approach to modelling and exploiting uncertainty in nonlinear control problems. Eng. Appl. Artif. Intell. 17(2), 145–158 (2004)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Iso, H., Wakamiya, S., Aramaki, E.: Density estimation for geolocation via convolutional mixture density network. arXiv preprint (2017). arXiv:1705.02750
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint (2013). arXiv:1312.6114
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Moon, S., Park, Y., Suh, I.H.: Predicting multiple pregrasping poses by combining deep convolutional neural networks with mixture density networks. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 581–590. Springer, Cham (2016). doi:10.1007/978-3-319-46675-0_64
Randall, J., Amft, O., Bohn, J., Burri, M.: LuxTrace: indoor positioning using building illumination. Pers. Ubiquit. Comput. 11(6), 417–428 (2007)
Rehder, E., Wirth, F., Lauer, M., Stiller, C.: Pedestrian prediction by planning using deep neural networks. arXiv preprint (2017). arXiv:1706.05904
Richmond, K.: A trajectory mixture density network for the acoustic-articulatory inversion mapping. In: Ninth International Conference on Spoken Language Processing (2006)
Torres-Sospedra, J., Montoliu, R., Martínez-Usó, A., Avariento, J.P., Arnau, T.J., Benedito-Bordonau, M., Huerta, J.: UJIIndoorLoc: a new multi-building and multi-floor database for wlan fingerprint-based indoor localization problems. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 261–270. IEEE (2014)
Wang, W., Xu, S., Xu, B.: Gating recurrent mixture density networks for acoustic modeling in statistical parametric speech synthesis. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5520–5524. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yang, F., Soriano, J., Kubo, T., Ikeda, K. (2017). A Hierarchical Mixture Density Network. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_93
Download citation
DOI: https://doi.org/10.1007/978-3-319-70093-9_93
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70092-2
Online ISBN: 978-3-319-70093-9
eBook Packages: Computer ScienceComputer Science (R0)