Efficient Human Stress Detection System Based on Frontal Alpha Asymmetry | SpringerLink
Skip to main content

Efficient Human Stress Detection System Based on Frontal Alpha Asymmetry

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

EEG signals reflect the inner emotional state of a person and regarding its wealth in temporal resolution, it can be used profitably to measure mental stress. Emotional states recognition is a growing research field inasmuch to its importance in Human-machine applications in all domains, in particular psychology and psychiatry. The main goal of this study is to provide a simple method for stress detection based on Frontal Alpha Asymmetry for trials selection and time, time-frequency domain features. This approach was tested on prevalent DEAP database, and provided us with two subdatasets to be processed and classified thereafter. From the variety of features produced in the literature we chose to test Hjorth parameters and Band Power as a time-frequency feature. To enhance the classification performance, we tested the SVM classifier, K-NN and Fuzzy K-NN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sulaiman, N., Taib, M.N., Lias, S., Murat, Z.H., Aris, S.A.M., Hamid, N.H.A.: Novel methods for stress features identification using EEG signals. Int. J. Simul.: Syst. Sci. Technol. 12(1), 27–33 (2011)

    Google Scholar 

  2. Giannakakis, G., Grigoriadis, D., Tsiknakis, M.: Detection of stress/anxiety state from EEG features during video watching. In: Conference of the IEEE Engineering in Medicine and Biology Society (2015)

    Google Scholar 

  3. Vanitha, V., Krishnan, P.: Real time stress detection system based on EEG signals. Biomed. Res. 27, 271–275 (2016). Special Issue

    Google Scholar 

  4. Lahane, P., Vaidya, A., Umale, C., Shirude, S., Raut, A.: Real time system to detect human stress using EEG signals. Int. J. Innovative Res. Comput. Commun. Eng. 4(4) (2016)

    Google Scholar 

  5. Brenner, R.P., Ulrich, R.F., Spiker, D.G., Sclabassi, R.J., Reynolds, C.F., Marin, R.S., Boller, F.: Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalogr. Clin. Neurophysiol. 64(6), 483–492 (1986)

    Article  Google Scholar 

  6. Pollock, V.E., Schneider, L.S.: Topographic electroencephalographic alpha in recovered depressed elderly. J. Abnorm. Psychol. 98(3), 268–273 (1989)

    Article  Google Scholar 

  7. Gray, J.A.: The psychophysiological basis of introversion-extraversion. Behav. Res. Ther. 8(3), 249–266 (1970)

    Article  Google Scholar 

  8. Coan, J.A., Allen, J.J.: Frontal EEG asymmetry and the behavioral activation and inhibition systems. Psychophysiology 40(1), 106–114 (2003)

    Article  Google Scholar 

  9. Sutton, S.K., Davidson, R.J.: Prefrontal brain asymmetry: a biological substrate of the behavioral approach and inhibition systems. Psychol. Sci. 8(3), 204–210 (1997)

    Article  Google Scholar 

  10. Tomarken, A.J., Davidson, R.J., Wheeler, R.E., Doss, R.C.: Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. J. Pers. Soc. Psychol. 62(4), 676–687 (1992)

    Article  Google Scholar 

  11. Dhahri, H., Alimi, A.M.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: IEEE International Conference on Neural Networks - Conference Proceedings, p. 2938 (2006)

    Google Scholar 

  12. Tomarken, A.J., Davidson, R.J., Henriques, J.B.: Resting frontal brain asymmetry predicts affective responses to films. J. Pers. Soc. Psychol. 59(4), 791–801 (1990)

    Article  Google Scholar 

  13. Dharmawan, Z.: Analysis of computer games player stress level using EEG data. Master of Science Thesis report, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Netherlands (2007)

    Google Scholar 

  14. Interactive Productline IP AB-Mindball. http://www.mindball.se/index.html

  15. Novák, D.: EEG and VEP signal processing. Technical report. Czech Technical University in Prague, Department of Cybernetics (2004)

    Google Scholar 

  16. Horlings, R.: Emotion recognition using brain activity. In: Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for Ph.D. Students in Computing, Gabrovo, Bulgaria, p. II.1-1 (2008)

    Google Scholar 

  17. Morilak, D.A.: Role of brain norepinephrine in the behavioral response to stress. Prog. Neuro-psychopharmacol. Biol. Psychiatry 29(8), 1214–1224 (2005)

    Article  Google Scholar 

  18. Hoffmann, E.: Brain training against stress: theory methods and results from an outcome study. Stress Rep. 4 (2005)

    Google Scholar 

  19. Lin, T., John, L.: Quantifying mental relaxation with EEG for use in computer games. In: International Conference on Internet Computing, Las Vegas, Nevada, USA, pp. 409–415 (2006)

    Google Scholar 

  20. Alimi, A.M.: Evolutionary computation for the recognition of on-line cursive handwriting. IETE J. Res. 48(5), 385–396 (2002). SPEC

    Article  Google Scholar 

  21. Fuchs, E., Uno, H., Fluegge, G.: Chronic psychosocial stress induces morphological alterations in hippocampal pyramidal neurons of the tree shrew. Brain Res. 673, 275–282 (1995)

    Article  Google Scholar 

  22. Bezine, H., Alimi, A.M., Derbel, N.: Handwriting trajectory movements controlled by a beta-elliptic model. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, p. 1228 (2003)

    Google Scholar 

  23. Hughes, J.W., Stoney, C.M.: Depressed mood is related to high-frequency heart rate variability during stressors. Psychosom. Med. 62, 796–803 (2000)

    Article  Google Scholar 

  24. Baghdadi, A., Aribi, Y., Alimi, A.M.: A survey of methods and performances for EEG-based emotion recognition. In: Abraham, A., Haqiq, A., Alimi, A.M., Mezzour, G., Rokbani, N., Muda, A.K. (eds.) HIS 2016. AISC, vol. 552, pp. 164–174. Springer, Cham (2017). doi:10.1007/978-3-319-52941-7_17

    Chapter  Google Scholar 

  25. Lawrence, D.A., Kim, D.: Central/peripheral nervous system and immune responses. Toxicology 142, 189–201 (2000)

    Article  Google Scholar 

  26. NIOSH, Stress at Work, NIOSH Publication Number 99-101 (1999)

    Google Scholar 

  27. Cooper, C.: Stress in the workplace. Br. J. Hosp. Med. 55, 559–563 (1996)

    Google Scholar 

  28. Manning, M., Jackson, C., Fusilier, M.: Occupational stress, social support, and the costs of health care. Acad. Manag. J. 39, 738–750 (1996)

    Article  Google Scholar 

  29. Ansari-asl, K., Chanel, G., Pun, T.: A channel selection method for EEG classification in emotion assessment based on synchronization likelihood. In: Proceedings of 15th European Signal Processing Conference, pp. 1241–1245 (2007)

    Google Scholar 

  30. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1970)

    Article  Google Scholar 

  31. Horlings, R., Datcu, D., Rothkrantz, L.: Emotion recognition using brain activity. In: Proceedings of International Conference on Computer Systems and Technologies, p. II.116 (2008)

    Google Scholar 

  32. Bastos-Filho, T.F., Ferreira, A., Atencio, A.C.: Evaluation of feature extraction techniques in emotional state recognition. In: IEEE Proceedings of 4th International Conference on Intelligent Human Computer Interaction, Kharagpur, India, 27–29 December 2012

    Google Scholar 

  33. Hosseini, S.A., Khalilzadeh, M., Changiz, S.: Emotional stress recognition system for affective computer based on bio-signals. J. Biol. Syst. 18, 101–114 (2010). Special Issue

    Article  Google Scholar 

  34. García-Martínez, B., Martínez-Rodrigo, A., Cantabrana, R.Z., García, J.M.P., Martínez, R.A.: Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings. Entropy 18, 221 (2016)

    Article  MathSciNet  Google Scholar 

  35. García-Martínez, B., Martínez-Rodrigo, A., Zangróniz, R., García, J.M.P., Alcaraz, R.: Symbolic analysis of brain dynamics detects negative stress. Entropy 18, 221 (2017)

    Article  Google Scholar 

  36. Elbaati, A., Boubaker, H., Kherallah, M., Alimi, A.M., Ennaji, A., Abed, H.E.: Arabic handwriting recognition using restored stroke chronology. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, p. 411 (2009)

    Google Scholar 

  37. Aribi, Y., Wali, A., Alimi, A.M.: Automated fast marching method for segmentation and tracking of region of interest in scintigraphic images sequences. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 725–736. Springer, Cham (2015). doi:10.1007/978-3-319-23117-4_62

    Chapter  Google Scholar 

  38. Aribi, Y., Wali, A., Hamza, F., Alimi, A.M., Guermazi, F.: ARG: a semiautomatic system for ROI detection on Renal Scintigraphic images. In: Proceedings of the 14th International Conference on Hybrid Intelligent Systems (HIS 2014), Kuwait, December 2014

    Google Scholar 

  39. Aribi, Y., Wali, A., Alimi, A.M.: An intelligent system for renal segmentation. In: Proceedings of the 15th International Conference on e-Health Networking - Healthcom 2013, Lisbon, Portugal, pp. 1–6, October 2013

    Google Scholar 

  40. Aribi, Y., Wali, A., Chakroun, M., Alimi, A.M.: Automatic definition of regions of interest on renal scintigraphic images. In: Proceedings of the Conference on Intelligent Systems and Control, Vancouver, Canada, AASRI Procedia, vol. 4, pp. 37–42 (2013)

    Google Scholar 

  41. Aribi, Y., Wali, A., Alimi, A.M.: A system based on the fast marching method for analysis and processing DICOM images: the case of renal scintigraphy dynamic. In: Proceedings of the International Conference on Computer Medical Applications (ICCMA 2013), Sousse, Tunisia, pp. 1–6, January 2013

    Google Scholar 

  42. Aribi, Y., Wali, A., Hamza, F., Alimi, A.M., Guermazi, F.: Analysis of scintigraphic renal dynamic studies: an image processing tool for the clinician and researcher. In: Hassanien, A.E., Salem, A.-B.M., Ramadan, R., Kim, T. (eds.) AMLTA 2012. CCIS, vol. 322, pp. 267–275. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35326-0_27

    Chapter  Google Scholar 

  43. Aribi, Y., Hamza, F., Wali, A., Alimi, A.M., Guermazi, F.: An automated system for the segmentation of dynamic scintigraphic images. Appl. Med. Inform. 34(2), 1–12 (2014)

    Google Scholar 

  44. DEAP dataset, a dataset for emotion analysis using EEG, physiological and video signals. http://www.eecs.qmul.ac.uk/mmv/datasets/deap/

Download references

Acknowledgments

The research leading to these results has received funding from the Ministry of Higher Education and Scientific Research of Tunisia under the grant agreement number LR11ES48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Baghdadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baghdadi, A., Aribi, Y., Alimi, A.M. (2017). Efficient Human Stress Detection System Based on Frontal Alpha Asymmetry. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics