Deep Neural Network with l2-Norm Unit for Brain Lesions Detection | SpringerLink
Skip to main content

Deep Neural Network with l2-Norm Unit for Brain Lesions Detection

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

Automated brain lesions detection is an important and very challenging clinical diagnostic task, because the lesions have different sizes, shapes, contrasts and locations. Deep Learning recently shown promising progresses in many application fields, which motivates us to apply this technology for such important problem. In this paper we propose a novel and end-to-end trainable approach for brain lesions classification and detection by using deep Convolutional Neural Network (CNN). In order to investigate the applicability, we applied our approach on several brain diseases including high and low grade glioma tumor, ischemic stroke, Alzheimer diseases, by which the brain Magnetic Resonance Images (MRI) have been applied as input for the analysis. We proposed a new operation unit which receives features from several projections of a subset units of the bottom layer and computes a normalized l2-norm for next layer. We evaluated the proposed approach on two different CNN architectures and number of popular benchmark datasets. The experimental results demonstrate the superior ability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cancer.net/cancer-types/brain-tumor/statistics.

  2. 2.

    http://www.oasis-brains.org/.

References

  1. Menze, B., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2014)

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  3. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  4. Gulcehre, C., Cho, K., Pascanu, R., Bengio, Y.: Learned-norm pooling for deep feedforward and recurrent neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8724, pp. 530–546. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44848-9_34

    Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015)

    Google Scholar 

  10. Paul, J.S., Plassard, A.J., Landman, B.A., Fabbri, D.: Deep learning for brain tumor classification, vol. 10137, pp. 1013710-1–1013710-16 (2017)

    Google Scholar 

  11. El Abbadi, N.K., Kadhim, N.E.: Brain cancer classification based on features and artificial neural network. Brain 6(1) (2017)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  14. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. CoRR

    Google Scholar 

  15. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR (2015)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Girshick, R.B.: Fast R-CNN. CoRR abs/1504.08083 (2015)

    Google Scholar 

  18. Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013)

    Article  Google Scholar 

  19. Liu, G., Zhang, X., Zhou, S.: Multi-class classification of support vector machines based on double binary tree. In: Fourth International Conference on Natural Computation, ICNC 2008, vol. 2, pp. 102–105. IEEE (2008)

    Google Scholar 

  20. http://brain-development.org/ixi-dataset/

  21. https://www.virtualskeleton.ch/BRATS/Start2016/

  22. http://www.medinfo.cs.ucy.ac.cy/index.php/downloads/datasets/

  23. http://www.isles-challenge.org/ISLES2016/

  24. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rezaei, M., Yang, H., Meinel, C. (2017). Deep Neural Network with l2-Norm Unit for Brain Lesions Detection. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_85

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics