Tinnitus EEG Classification Based on Multi-frequency Bands | SpringerLink
Skip to main content

Tinnitus EEG Classification Based on Multi-frequency Bands

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

Tinnitus is an auditory phantom percept of chronic high-pitched sound, ringing, or noise. Since the underlying physiological mechanisms of tinnitus are still under study, there is no universally effective treatment to cure tinnitus so far. There is even no method for objectively classifying tinnitus patients from normal people. In this paper, we utilize a Multi-view Intact Space Learning (MISL) method for the analysis and classification of electroencephalogram (EEG) signals using power value of frequency bands. At first, the power values of seven frequency bands are calculated by using Fast Fourier Transform (FFT) so as to obtain seven single views of features. Next, Multi-view Intact Space Learning is applied to integrate the seven single views together to get better classification results. Compared with the single view classification, the Multi-view Intact Space Learning method has achieved significant accuracy improvements by 6.32–23.25%. That is, the best accuracy, precision, recall and F1 of classification performance reach 0.828, 0.811, 0.857 and 0.833 respectively. The proposed method can be applied for auxiliary therapy of tinnitus as well as be extended to assist with the treatment of other diseases.

Shao-Ju Wang and Yue-Xin Cai make equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basoeki, A., Rahardjo, E., Hood, J.: PCA-based linear dynamical systems for multichannel EEG classification. In: International Conference on Neural Information Processing (ICONIP), vol. 2, pp. 745–749 (2002)

    Google Scholar 

  2. Eggermont, J.J., Roberts, L.E.: The neuroscience of tinnitus. Trends Neurosci. 27(11), 676–682 (2004)

    Article  Google Scholar 

  3. Ghayab, H.R.A., Li, Y., Abdulla, S., Diykh, M., Wan, X.: Classification of epileptic EEG signals based on simple random sampling and sequential feature selection. Brain Inform. 3(2), 85–91 (2016)

    Article  Google Scholar 

  4. Houdayer, E., Teggi, R., Velikova, S., Gonzalez-Rosa, J., Bussi, M., Comi, G., Leocani, L.: Involvement of cortico-subcortical circuits in normoacousic chronic tinnitus: a source localization EEG study. Clin. Neurophysiol. 126(12), 2356–2365 (2015)

    Article  Google Scholar 

  5. Iriarte, J., Urrestarazu, E., Valencia, M., Alegre, M., Malanda, A., Viteri, C., Artieda, J.: Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J. Clin. Neurophysiol. 20(4), 249 (2003)

    Article  Google Scholar 

  6. Li, P.-Z., Li, J.-H., Wang, C.-D.: A SVM-based EEG signal analysis: an auxiliary therapy for tinnitus. In: Liu, C.-L., Hussain, A., Luo, B., Tan, K.C., Zeng, Y., Zhang, Z. (eds.) BICS 2016. LNCS, vol. 10023, pp. 207–219. Springer, Cham (2016). doi:10.1007/978-3-319-49685-6_19

    Chapter  Google Scholar 

  7. Lin, K.-Y., Wang, C.-D., Meng, Y.-Q., Zhao, Z.-L.: Multi-view unit intact space learning. In: Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M. (eds.) KSEM 2017. LNCS, vol. 10412, pp. 211–223. Springer, Cham (2017). doi:10.1007/978-3-319-63558-3_18

    Chapter  Google Scholar 

  8. Meyer, M., Luethi, M.S., Neff, P., Langer, N., Büchi, S.: Disentangling tinnitus distress and tinnitus presence by means of EEG power analysis. Neural Plast. 2014 (2014)

    Google Scholar 

  9. Perera, H., Shiratuddin, M.F., Wong, K.W.: A review of electroencephalogram-based analysis and classification frameworks for dyslexia. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9950, pp. 626–635. Springer, Cham (2016). doi:10.1007/978-3-319-46681-1_74

    Chapter  Google Scholar 

  10. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation (2011)

    Google Scholar 

  11. Roberts, L.E., Eggermont, J.J., Caspary, D.M., Shore, S.E., Melcher, J.R., Kaltenbach, J.A.: Ringing ears: the neuroscience of tinnitus. J. Neurosci. 30(45), 14972–14979 (2010)

    Article  Google Scholar 

  12. Singh, P., Joshi, S., Patney, R., Saha, K.: Fourier-based feature extraction for classification of EEG signals using EEG rhythms. Circ. Syst. Sig. Process. 35(10), 3700–3715 (2016)

    Article  MathSciNet  Google Scholar 

  13. Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  14. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

  15. Vanneste, S., De, R.D.: Deafferentation-based pathophysiological differences in phantom sound: tinnitus with and without hearing loss. Neuroimage 129, 80–94 (2015)

    Article  Google Scholar 

  16. Wu, W., Chen, Z., Gao, X., Li, Y., Brown, E.N., Gao, S.: Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 639 (2015)

    Article  Google Scholar 

  17. Xu, C., Tao, D., Xu, C.: Multi-view intact space learning. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2531–2544 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by NSFC (No. 61502543) and Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (No. 2016TQ03X542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Dong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, SJ., Cai, YX., Sun, ZR., Wang, CD., Zheng, YQ. (2017). Tinnitus EEG Classification Based on Multi-frequency Bands. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_84

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics