Adaptive Fireworks Algorithm Based on Two-Master Sub-population and New Selection Strategy | SpringerLink
Skip to main content

Adaptive Fireworks Algorithm Based on Two-Master Sub-population and New Selection Strategy

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

Adaptive Fireworks Algorithm (AFWA) is an effective algorithm for solving optimization problems. However, AFWA is easy to fall into local optimal solutions prematurely and it also provides a slow convergence rate. In order to improve these problems, the purpose of this paper is to apply two-master sub-population (TMS) and new selection strategy to AFWA with the goal of further boosting performance and achieving global optimization. Our simulation compares the proposed algorithm (TMSFWA) with the FWA-Based algorithms and other swarm intelligence algorithms. The results show that the proposed algorithm achieves better overall performance on the standard test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010)

    Google Scholar 

  2. Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: Proceedings of 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 2069–2077 (2013)

    Google Scholar 

  3. Zheng, S., Li, J., Tan, Y.: Adaptive fireworks algorithm. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation, Beijing, China, pp. 3214–3221 (2014)

    Google Scholar 

  4. Zheng, S., Tan, Y.: Dynamic search in fireworks algorithm. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation, Beijing, China, pp. 3222–3229 (2014)

    Google Scholar 

  5. Tan, Y.: Fireworks Algorithm Introduction, 1st edn. Science press, Beijing (2015)

    Book  Google Scholar 

  6. Gao, H.Y., Diao, M.: Cultural firework algorithm and its application for digital filters design. Int. J. Model. Ident. Control 14(4), 324–331 (2011)

    Article  Google Scholar 

  7. Janecek, A., Tan, Y.: Using population based algorithms for initializing nonnegative matrix factorization. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011. LNCS, vol. 6729, pp. 307–316. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21524-7_37

    Chapter  Google Scholar 

  8. Wen, R., Mi, G.Y., Tan, Y.: Parameter optimization of local-concentration model for spam detection by using fireworks algorithm. In: Proceedings of 4th International Conference on Swarm Intelligence, Harbin, China, pp. 439–450 (2013)

    Google Scholar 

  9. Chen, T.: On the Computational Complexity of Evolutionary Algorithms. University of Science and Technology of China, Anhui, China (2010, in Chinese)

    Google Scholar 

  10. Liang, J., Qu, B., Suganthan, P., et al.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization (2013)

    Google Scholar 

  11. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. M, El-Abd.: Testing a particle swarm optimization and artificial bee colony hybrid algorithm on the CEC13 benchmarks. In: Proceedings of 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 2215–2220 (2013)

    Google Scholar 

  13. Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimization 2011 at CEC2013: a baseline for future PSO improvements. In: Proceedings of 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 2337–2344 (2013)

    Google Scholar 

  14. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Padhye, N., Mittal, P., Deb, K.: Differential evolution: performances and analyses. In: Proceedings of 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 1960–1967 (2013)

    Google Scholar 

  16. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of 1996 IEEE International Conference on Evolutionary Computation, Nagoya, Japan, pp. 312–317 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoufei Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, X., Han, S., Zhao, L., Gong, C. (2017). Adaptive Fireworks Algorithm Based on Two-Master Sub-population and New Selection Strategy. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics