Deep Learning Features for Lung Adenocarcinoma Classification with Tissue Pathology Images | SpringerLink
Skip to main content

Deep Learning Features for Lung Adenocarcinoma Classification with Tissue Pathology Images

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 4504 Accesses

Abstract

This paper presents the approach for lung adenocarcinoma diagnosis, using deep convolutional neural networks (CNN) to learn the features from the tissue pathology images. Our multi-stage procedure can detect the lung cancer of adenocarcinoma, in which the preprocessing consists of image enhancement and class imbalance treatment. Then Gradient-weighted Class Activation Mapping (Grad-CAM) and Guided-Backpropagation visualization techniques are employed to produce the visual explanations for decisions from our CNN model. Learned features and details for the specific areas have been generated through the model. Data is collected from 22 different patients with 270 lesion images and 24 normal ones. Experimental result on this data set has achieved F1-score with 0.963. Moreover, the study is not only to pursue precise classification on the tissue pathology images of lung adenocarcinoma, but also learn the specific areas in images which should be more concerned by doctors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. (2017)

    Google Scholar 

  2. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A., van Ginneken, B., Sanchez, C.I.: A survey on deep learning in medical image analysis. arxiv preprint arXiv:1702.05747 (2017)

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arxiv preprint arXiv:1409.1556 (2014)

  5. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  6. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  7. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  8. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Gradcam: Why did you say that? visual explanations from deep networks via gradient based localization. arxiv preprint. arXiv:1610.02391 (2016)

  9. Zuiderveld, K.: Contrast Limited Adaptive Histogram Equalization. Academic Press Professional Inc., Cambridge (1994)

    Book  Google Scholar 

  10. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arxiv preprint arXiv:1412.6806 (2014)

  11. Kawahara, J., Hamarneh, G.: Multi-resolution-Tract CNN with hybrid pretrained and skin-lesion trained layers. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 164–171. Springer, Cham (2016). doi:10.1007/978-3-319-47157-0_20

    Chapter  Google Scholar 

  12. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_46

    Chapter  Google Scholar 

  13. de Vos, B.D., Wolterink, J.M., de Jong, P.A., Viergever, M.A., Isgum, I.: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks. In: Medical Imaging 2016: Image Processing, vol. 9784 (2016)

    Google Scholar 

  14. Yang, D., Zhang, S., Yan, Z., Tan, C., Li, K., Metaxas, D.: Automated anatomical landmark detection ondistal femur surface using convolutional neural network. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 17–21. IEEE (2015)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61672276) and Natural Science Foundation of Jiangsu, China (BK20161406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

He, J., Shang, L., Ji, H., Zhang, X. (2017). Deep Learning Features for Lung Adenocarcinoma Classification with Tissue Pathology Images. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics