Computer-Aided Diagnosis in Chest Radiography with Deep Multi-Instance Learning | SpringerLink
Skip to main content

Computer-Aided Diagnosis in Chest Radiography with Deep Multi-Instance Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

The Computer-Aided Diagnosis (CAD) for chest X-ray image has been investigated for many years. However, it has not been widely used since limited accuracy. Deep learning opens a new era for image recognition and classification. We propose a novel framework called Deep Multi-Instance Learning (DMIL) on chest radiographic images diagnosis, which combines deep learning and multi-instance learning. Besides, we preprocess images with the alignment based on the key points. This framework can effectively improve the diagnosis effect in the image level annotation. We quantify the framework on three datasets, respectively with different amounts and different classification tasks. The proposed framework obtained the AUC of 0.986, 0.873, 0.824 respectively in classification tasks of the enlarged heart, the pulmonary nodule, and the abnormal. The experiments we implement demonstrate that the proposed framework outperforms the other methods in various evaluation criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Song, Y., Cai, W., Zhou, Y., Feng, D.D.: Feature-based image patch approximation for lung tissue classification. IEEE Trans. Med. Imag. 32(4), 797–808 (2013)

    Article  Google Scholar 

  2. Sorensen, L., Shaker, S.B., De Bruijne, M.: Quantitative analysis of pulmonary Emphysema using local binary patterns. IEEE Trans. Med. Imag. 29(2), 559–569 (2010)

    Article  Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  4. Roth, H., Lu, L., Liu, J., Yao, J., Seff, A., Cherry, K., Kim, L., Summers, R.: Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imag. 35(5), 1170–1181 (2015)

    Article  Google Scholar 

  5. Bar, Y., Diamant, I., Wolf, L., Greenspan, H.: Deep learning with non-medical training used for chest pathology identification. In: SPIE Medical Imaging, pp. 94140V. International Society for Optics and Photonics (2015)

    Google Scholar 

  6. Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H.: Chest pathology detection using deep learning with non-medical training. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 294–297. IEEE (2015)

    Google Scholar 

  7. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imag. 35(5), 1313–1321 (2016)

    Article  Google Scholar 

  8. Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation, pp. 3460–3469 (2015)

    Google Scholar 

  9. Zeng, T., Ji, S.: Deep convolutional neural networks for multi-instance multi-task learning. In: 2015 IEEE International Conference on Data Mining (ICDM), pp. 579–588. IEEE (2015)

    Google Scholar 

  10. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 FPS via regressing local binary features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1692 (2014)

    Google Scholar 

  11. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  14. Melendez, J., van Ginneken, B., Maduskar, P., Philipsen, R.H., Reither, K., Breuninger, M., Adetifa, I.M., Maane, R., Ayles, H., Sánchez, C.I.: A novel multiple-instance learning-based approach to computer-aided detection of Tuberculosis on chest X-rays. IEEE Trans. Med. Imag. 34(1), 179–192 (2015)

    Article  Google Scholar 

  15. Ciompi, F., de Hoop, B., van Riel, S.J., Chung, K., Scholten, E.T., Oudkerk, M., de Jong, P.A., Prokop, M., van Ginneken, B.: Automatic classification of pulmonary peri-fissural nodules in Computed Tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med. Image Anal. 26(1), 195–202 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61472023) and the State Key Laboratory of Software Development Environment (No. SKLSDE-2016ZX-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Leng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Qu, K., Chai, X., Liu, T., Zhang, Y., Leng, B., Xiong, Z. (2017). Computer-Aided Diagnosis in Chest Radiography with Deep Multi-Instance Learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics