Abstract
This paper is a feasibility study of using the NeuCube spiking neural network (SNN) architecture for modeling EEG brain data related to perceiving versus mimicking facial expressions. We collected EEG patterns during perception and imitation of facial expressions for each emotion. Comparing the collected data in perceiving and mimicking facial expressions, EEG patterns were very similar. This fact suggests that it seems that there are mirror neurons on facial expression in the human brain. Recently, some studies have been reported that the mirror neuron system does not work well in the case of subjects with brain disorders. In this study, we calculated differences between EEG patterns when we perceived facial expressions and mimicking facial expressions for healthy people and developmental disorders.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action recognition in thepremotor cortex. Brain 119, 593–609 (1996)
Lacoboni, M., Woods, R.P., Brass, M., Bekkering, H., Mazziotta, J.C., Rizzolatti, G.: Cortical mechanisms of human imitation. Science 186, 2526–2528 (1999)
Binkofski, F., Buccino, G., Seitz, R.J., Rizzolatti, G., Freund, H.-J.: Afronto-parietal circuit for object manipulation in man: evidence from an fMRIstudy. Eur. J. Neurosci. 11, 3276–3286 (1999)
Kasabov, N.: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)
Tu, E., Kasabov, N., Yang, J.: Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling and understanding of stream data. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13. IEEE Press, New York (2016)
Kasabov, N., Scott, E., Tu, E., Marks, S., Sengupta, N., Capecci, E.: Evolvingspatio- temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–14 (2016)
Doborjeh, M.G., Capecci, E., Kasabov, N.: Classification and segmentation of fMRI spatio-temporal brain data with a neucube evolving spiking neural network model. In: IIEEE International Symposium on Circuits and Systems, pp. 73–80. IEEE Press, Melbourne (2014)
Doberjeh, M.G., Wang, G., Kasabov, N., Kydd, R., Russell, B.R.: A NeucubeSpiking neural network model for the study of dynamic brain activities during a GO/NO GO task: a case study on using EEG data of healthy vs addiction vs treated subjects. IEEE Trans. Biomed. Eng. 63, 1830–1841 (2016)
Doborjeh, M.G., Kasabov, N.: Dynamic 3D clustering of spatio-temporal brain data in the NeuCube spiking neural network architecture on a case study of fMRI data. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 191–198. Springer, Cham (2015). doi:10.1007/978-3-319-26561-2_23
Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning throughspike- timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)
Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)
Matsumoto, D., Ekman, P.: Japanese and Caucasian facial expressions of emotion (IACFEE) [Slides]. Intercultural and Emotion Research Laboratory, Department of Psychology, San Francisco State University, San Francisco (1988)
Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain: 3- Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988)
Koessler, L., Maillard, L., Benhadid, A., Vignal, J.P., Felblinger, J., Vespignani, H., Braun, M.: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. Neuroimage 46, 64–72 (2009)
Alfano, K.M., Cimino, C.R.: Alteration of expected hemispheric asymmetries: valence and arousal effects in neuropsychological models of emotion. Brain Cogn. 66, 213–220 (2008)
Kawano, H., Seo, A., Doborjeh, Z.G., Kasabov, N., Doborjeh, M.G.: Analysis of similarity and differences in brain activities between perception and production of facial expressions using EEG data and the NeuCube spiking neural network architecture. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9950, pp. 221–227. Springer, Cham (2016). doi:10.1007/978-3-319-46681-1_27
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Omori, Y., Kawano, H., Seo, A., Doborjeh, Z.G., Kasabov, N., Doborjeh, M.G. (2017). EEG Comparison Between Normal and Developmental Disorder in Perception and Imitation of Facial Expressions with the NeuCube. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_63
Download citation
DOI: https://doi.org/10.1007/978-3-319-70093-9_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70092-2
Online ISBN: 978-3-319-70093-9
eBook Packages: Computer ScienceComputer Science (R0)