Emotion Annotation Using Hierarchical Aligned Cluster Analysis | SpringerLink
Skip to main content

Emotion Annotation Using Hierarchical Aligned Cluster Analysis

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 4389 Accesses

Abstract

The correctness of annotation is quite important in supervised learning, especially in electroencephalography(EEG)-based emotion recognition. The conventional EEG annotations for emotion recognition are based on the feedback like questionnaires about emotion elicitation from subjects. However, these methods are subjective and divorced from experiment data, which lead to inaccurate annotations. In this paper, we pose the problem of annotation optimization as temporal clustering one. We mainly explore two types of clustering algorithms: aligned clustering analysis (ACA) and hierarchical aligned clustering analysis (HACA). We compare the performance of questionnaire-based, ACA-based, HACA-based annotation on a public EEG dataset called SEED. The experimental results demonstrate that our proposed ACA-based and HACA-based annotation achieve an accuracy improvement of \(2.59\%\) and \(4.53\%\) in average, respectively, which shows their effectiveness for emotion recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://bcmi.sjtu.edu.cn/~seed/index.html.

References

  1. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. J. Artif. Intell. Res. 11, 131–167 (1999)

    MATH  Google Scholar 

  2. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

    Article  Google Scholar 

  3. Guan, D., Yuan, W., Lee, Y.K., Lee, S.: Nearest neighbor editing aided by unlabeled data. Inf. Sci. 179(13), 2273–2282 (2009)

    Article  Google Scholar 

  4. Guan, D., Yuan, W., Ma, T., Khattak, A.M., Chow, F.: Cost-sensitive elimination of mislabeled training data. Inf. Sci. 402, 170–181 (2017)

    Article  Google Scholar 

  5. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42(3), 419–427 (2004)

    Article  Google Scholar 

  6. Lam, C.P., Stork, D.G.: Evaluating classifiers by means of test data with noisy labels. In: IJCAI, pp. 513–518 (2003)

    Google Scholar 

  7. Lu, Y., Zheng, W.L., Li, B., Lu, B.L.: Combining eye movements and EEG to enhance emotion recognition. In: IJCAI, pp. 1170–1176 (2015)

    Google Scholar 

  8. Sáez, J.A., Galar, M., Luengo, J., Herrera, F.: A first study on decomposition strategies with data with class noise using decision trees. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS, vol. 7209, pp. 25–35. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28931-6_3

    Chapter  Google Scholar 

  9. Schuller, B., Rigoll, G., Lang, M.: Hidden Markov model-based speech emotion recognition. In: Proceedings of the 2003 International Conference on Multimedia and Expo, vol. 1, p. I–401. IEEE (2003)

    Google Scholar 

  10. Shi, L.C., Jiao, Y.Y., Lu, B.L.: Differential entropy feature for EEG-based vigilance estimation. In: 35th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, pp. 6627–6630. IEEE (2013)

    Google Scholar 

  11. Shimodaira, H., Noma, K.I., Nakai, M., Sagayama, S., et al.: Dynamic time-alignment kernel in support vector machine. In: NIPS, vol. 2, pp. 921–928 (2001)

    Google Scholar 

  12. Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)

    Article  Google Scholar 

  13. Zheng, W.L., Lu, B.L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7(3), 162–175 (2015)

    Article  Google Scholar 

  14. Zheng, W.L., Zhu, J.Y., Lu, B.L.: Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. (2017). doi:10.1109/TAFFC.2017.2712143

  15. Zheng, W.L., Zhu, J.Y., Peng, Y., Lu, B.L.: EEG-based emotion classification using deep belief networks. In: IEEE International Conference on Multimedia and Expo, pp. 1–6. IEEE (2014)

    Google Scholar 

  16. Zhou, F., De la Torre, F., Hodgins, J.K.: Aligned cluster analysis for temporal segmentation of human motion. In: 8th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 1–7. IEEE (2008)

    Google Scholar 

  17. Zhou, F., De la Torre, F., Hodgins, J.K.: Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 582–596 (2013)

    Article  Google Scholar 

  18. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Key Research and Development Program of China (Grant No. 2017YFB1002501), the National Natural Science Foundation of China (Grant No. 61673266), the Major Basic Research Program of Shanghai Science and Technology Committee (Grant No. 15JC1400103), ZBYY-MOE Joint Funding (Grant No. 6141A02022604), and the Technology Research and Development Program of China Railway Corporation (Grant No. 2016Z003-B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Liang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhao, WY., Fang, S., Ji, T., Ji, Q., Zheng, WL., Lu, BL. (2017). Emotion Annotation Using Hierarchical Aligned Cluster Analysis. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics