Complex-Valued Neural Networks for Wave-Based Realization of Reservoir Computing | SpringerLink
Skip to main content

Complex-Valued Neural Networks for Wave-Based Realization of Reservoir Computing

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

In this paper, we discuss the significance of complex-valued neural-network (CVNN) framework in energy-efficient neural networks, in particular in wave-based reservoir networks. Physical-wave reservoir networks are highly enhanced by CVNNs. From this viewpoint, we also compare the features of reservoir computing and other architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This paper concentrates upon a long-span perspective of reservoir networks with CVNNs. Detailed dynamics of CVNNs are given in literature such as Ref. [17].

References

  1. Takeda, S., Nakano, D., Yamane, T., Tanaka, G., Nakane, R., Hirose, A., Nakagawa, S.: Photonic reservoir computing based on laser dynamics with external feedback. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 222–230. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_24

    Chapter  Google Scholar 

  2. Yamane, T., Takeda, S., Nakano, D., Tanaka, G., Nakane, R., Nakagawa, S., Hirose, A.: Dynamics of reservoir computing at the edge of stability. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 205–212. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_22

    Chapter  Google Scholar 

  3. Tanaka, G., Nakane, R., Yamane, T., Nakano, D., Takeda, S., Nakagawa, S., Hirose, A.: Exploiting Heterogeneous units for reservoir computing with simple architecture. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 187–194. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_20

    Chapter  Google Scholar 

  4. Mori, R., Tanaka, G., Nakane, R., Hirose, A., Aihara, K.: Computational performance of echo state networks with dynamic synapses. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 264–271. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_29

    Chapter  Google Scholar 

  5. Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., Nakano, D.: Wave-based reservoir computing by synchronization of coupled oscillators. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 198–205. Springer, Cham (2015). doi:10.1007/978-3-319-26555-1_23

    Chapter  Google Scholar 

  6. Hirose, A., Eckmiller, R.: Proposal of frequency-domain multiplexing in optical neural networks. Neurocomputing 10(2), 197–204 (1996)

    Article  Google Scholar 

  7. Hirose, A., Eckmiller, R.: Coherent optical neural networks that have optical-frequency-controlled behavior and generalization ability in the frequency domain. Appl. Opt. 35(5), 836–843 (1996)

    Article  Google Scholar 

  8. Kawata, S., Hirose, A.: Coherent optical neural network that learns desirable phase values in frequency domain by using multiple optical-path differences. Opt. Lett. 28(24), 2524–2526 (2003)

    Article  Google Scholar 

  9. Kawata, S., Hirose, A.: Frequency-multiplexed logic circuit based on a coherent optical neural network. Appl. Opt. 44(19), 4053–4059 (2005)

    Article  Google Scholar 

  10. Kawata, S., Hirose, A.: Frequency-multiplexing ability of complex-valued Hebbian learning in logic gates. Int. J. Neural Syst. 12(1), 43–51 (2008)

    Google Scholar 

  11. Tanizawa, K., Hirose, A.: Performance analysis of steepest-descent-based feedback control of tunable dispersion compensator for adaptive dispersion compensation in all-optical dynamic routing networks. IEEE/OSA J. Lightwave Technol. 25(4), 1086–1094 (2007)

    Article  Google Scholar 

  12. Tanizawa, K., Hirose, A.: Fast tracking algorithm for adaptive compensation of high-speed PMD variation caused by SOP change in milliseconds. IEEE Photonics Technol. Lett. 21(3), 140–142 (2009)

    Article  Google Scholar 

  13. Hara, T., Hirose, A.: Adaptive plastic-landmine visualizing radar system: effects of aperture synthesis and feature-vector dimension reduction. IEICE Trans. Electron. E88–C(12), 2282–2288 (2005)

    Article  Google Scholar 

  14. Suksmono, A.B., Hirose, A.: Interferometric sar image restoration using Monte-Carlo metropolis method. IEEE Trans. Sig. Process. 50(2), 290–298 (2002)

    Article  Google Scholar 

  15. Shang, F., Hirose, A.: Quaternion neural-network-based PolSAR land classification in poincare-sphere-parameter space. IEEE Trans. Geosci. Remote Sens. 52(9), 5693–5703 (2014)

    Article  Google Scholar 

  16. Ding, T., Hirose, A.: Fading channel prediction based on combination of complex-valued neural networks and chirp Z-transform. IEEE Trans. Neural Netw. Learn. Syst. 25(9), 1686–1695 (2014)

    Article  Google Scholar 

  17. Hirose, A.: Complex-Valued Neural Networks, 2nd edn. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  18. Hirose, A., Eckmiller, R.: Behavior control of coherent-type neural networks by carrier-frequency modulation. IEEE Trans. Neural Netw. 7(4), 1032–1034 (1996)

    Article  Google Scholar 

  19. Hirose, A., Kiuchi, M.: Coherent optical associative memory system that processes complex-amplitude information. IEEE Photon. Tech. Lett. 12(5), 564–566 (2000)

    Article  Google Scholar 

  20. Goto, E.: The parametron - a new circuit element which utilizes non-linear reactors. Paper of Technical Group of Electronic Computers and Nonlinear Theory, IECE (1954, in Japanese)

    Google Scholar 

  21. Hirose, A.: Complex-Valued Neural Networks: Theories and Applications. Innovative Intelligence, vol. 5. World Scientific Publishing, Singapore (2003)

    Book  MATH  Google Scholar 

  22. Hirose, A. (ed.): Complex-Valued Neural Networks: Advances and Applications. IEEE Press Series on Computational Intelligence. IEEE Press and Wiley, New Jersey (2013)

    Google Scholar 

  23. Mandic, D.P., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters - Noncircularity, Widely Linear and Neural Models. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  24. Adali, T., Haykin, S.: Adaptive Signal Processing: Next Generation Solutions. Wiley-IEEE Press, New Jersey (2010)

    Book  Google Scholar 

  25. Aizenberg, I.: Complex-Valued Neural Networks with Multi-Valued Neurons. Studies in Computational Intelligence. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  26. Nitta, T.: Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. Information Science Reference, Pennsylvania (2009)

    Google Scholar 

  27. Bayro-Corrochano, E.: Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  28. Suresh, S., Sundararajan, N., Savitha, R.: Supervised Learning with Complex-valued Neural Networks. Springer, Heidelberg (2013)

    Book  Google Scholar 

  29. Hirose, A., Higo, T., Tanizawa, K.: Efficient generation of holographic movies with frame interpolation using a coherent neural network. IEICE Electron. Expr. 3(19), 417–423 (2006)

    Article  Google Scholar 

  30. Tay, C.S., Tanizawa, K., Hirose, A.: Error reduction in holographic movies using a hybrid learning method in coherent neural networks. Appl. Opt. 47(28), 5221–5228 (2008)

    Article  Google Scholar 

  31. Takeda, M., Kirihara, S., Miyamoto, Y., Sakoda, K., Honda, K.: Localization of electromagnetic waves in three dimensional fractal cavities. Phys. Rev. Lett. 92, 093902 (2004)

    Article  Google Scholar 

  32. Ono, A., Sato, S., Kinjo, M., Nakajima, K.: Study on the performance of neuromorphic adiabatic quantum computation algorithms. In: International Joint Conference on Neural Networks (IJCNN) 2008, Hong Kong, Nakajima, pp. 2508–2512, June 2008

    Google Scholar 

  33. Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 23, 541–551 (2012)

    Article  Google Scholar 

  34. Antonik, P., Duport, F., Smerieri, A., Hermans, M., Haelterman, M., Massar, S.: Online training of an opto-electronic reservoir computer. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 233–240. Springer, Cham (2015). doi:10.1007/978-3-319-26535-3_27

    Chapter  Google Scholar 

  35. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion neural network with geometrical operators. J. Intell. Fuzzy Syst. 15, 149–164 (2004)

    MATH  Google Scholar 

  36. Takizawa, Y., Shang, F., Hirose, A.: Adaptive land classification and new class generation by unsupervised double-stage learning in poincare sphere space for polarimetric synthetic aperture radars. Neurocomputing 248, 3–10 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hirose, A. et al. (2017). Complex-Valued Neural Networks for Wave-Based Realization of Reservoir Computing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics